Trees, forests and warfare

As has been highlighted previously in this blog (the series on state forestry, for example), trees have been used to fund the gluttonous cogs of the war machine, across both time and space. Usually, this timber consumption has manifested from the progressive land acclamation and legislatory enforcement by the state, until large tracts of forest are state-owned; or private forests can be utilised by the state in times of political emergency. This post therefore focusses not on repeating what has previously been discussed, and instead investigates how the forests themselves have been used for the arts of war – as in, the forest as a site of battle, or for the preparation of one; not that the forest as a site of battle is to be desired, for any attacking force must expect the unexpected, and typical formations and approaches to warfare cannot be applied in the enclosed forest setting (Clayton, 2012). Of course, the prior blog posts I did on state forestry highlight how armed guerrillas in Indonesia and Zimbabwe used the forests for cover and ambush, though this aspect of forest use extends far beyond just these two examples.

Beginning somewhat close to home (for the author), it can be recognised how the New Forest, in the county of Hampshire, UK, was used by the British and American armies, during the Second World War (Leete, 2014). Because of its strategic location relative to the coast of continental Europe, residing along the south coast of England, and complete with nearby ports in Southampton and Poole, the New Forest was used as the first line of defence against any invading Germans coming over from France. For this reason, the forest was used by both the Intelligence Service, and also by thousands of troops who would constitute the defending force if enemy ground invasion did occur. Furthermore, the extensive forest cover provided camouflage for over 30,000 troops in the moths before D-Day (Operation Neptune) in 1944, and the surrounding heathlands acted as airfields and storage areas of military vehicles. In total, 20,000 acres of the New Forest were utilised by the resident forces, during the war, though much like how the forest suddenly filled with troops it also quickly emptied, and almost immediately after the D-Day landing at Normandy the New Forest once again became very sparsely populated.

Troops training near to Brockenhurst, in the New Forest. Source: The New Forest Guide.

The Second World War, beyond its association with the New Forest, was the site of actual battle. One example is that of the Battle of Hürtgen Forest, which took place between the US and German forces through September 1944 to February 1945. Situated on the border of Germany and Belgium, the Germans occupied the forest because of its strategic importance to future offensives on the Rhine. Fearing that these German troops would eventually therefore support the front line, the US Army sought to take control of the forest to stall this pursuit. However, because the terrain was very uneven, the access routes through the forest to constituent villages were narrow and almost non-existent, the trees were very dense in many locations, and forest clearings sudden and sporadically occurring, support from tanks was not feasible, and navigating the forest was often challenging and certainly very risky. Subsequently, the US forces suffered losses of over 30,000 men (at times, entire units were lost), eclipsing those incurred by the Germans; in spite of their much larger size. Granted, the Germans also suffered huge losses (Rush, 2001). The forest was thus named ‘The Death Factory’, by the US troops (Whiting, 2000), and became the grave of many individuals from both sides of the conflict.

The 28th Infantry Division of the US Army journey through the intrepid forest on 2nd November 1944. Source: History Net.

Curiously, the close of the Second World War also saw forests treated almost as bounty or reparation; at least, in Germany. Following the defeat Germany suffered, the country was subsequently segmented into various zones: the south-west of Germany became the French Zone, whilst the southern and south-east segments were under control by the Americans, the northern and north-west overseen by the British, and the east and north-east by the Soviets. The purpose of this was to enable Germany to ‘repent’ its ‘sins’, and the occupiers – the Americans, British, French, and Soviets – could harvest the forests as they saw fit, as long as such harvests were not in excess of the reparation quotas detailed after the Potsdam Conference in the summer of 1945.

Unfortunately, as such quotas usually were far greater than the rate at which the remaining forests (many were in an alarming state of disrepair, commercially-speaking) of Germany could be replenished, the Soviet zone saw fourteen years’ worth of timber logged in just four years. Alongside the purging of these now Soviet-controlled forests, those foresters who were not drafted into the war effort by the German government at the time were forced to work as hard labourers in the forests, and the traditionally scientific method that was German forestry was quashed by the inexperienced Soviets. Similar unsustainable levels of forestry were undertaken in the other occupied areas of Germany, by the Allied governments (Nelson, 2005).

Beyond the Second World War, Clayton (2012) remarks that the forest has been the site of battle as early as 9 A.D. In this year, the forest of Teutoburg was to plague three Roman legions and their auxiliaries – who were ambushed by the allied local Germanic tribes after an uprising in the region – quite cataclysmically. In this case, the Roman legions were headed by the reportedly inexperienced commander Publius Quinctilius Varus, whilst the commander of the allied tribes was the Germanic nobleman known as Arminius, who had himself been trained by the Roman army and was in fact part of the Roman legions who were tasked to deal with the uprising of the local tribes, though quickly defected to lead the Germans into battle.

Under the order of Varus, who was persuaded by Arminius (who at this point in the saga was still in the Roman army and appointed as an officer), the Roman legions headed into the forest to attempt to quell the uprising; at which point Arminius defected, and gathered up to 50,000 Germans to fight against approximately 7,000 Roman troops and their horses (including the three legions of eighty men each). In this forest, the now-defected Arminius used the terrain (including steep slopes, fallen trees, and dense forest cover) to confuse and disorientate the armour-clad Roman legions and support troops, who at first became surrounded and then were torn apart by the nimble Germanic warriors equipped with lightweight weapons (such as darts) and, for close combat, broadswords and spears. Most Roman troops were killed within the forest, in the small units that fled in all directions after Varus (who committed suicide) declared a retreat, though some unfortunate individuals were enslaved and / or tortured by the Germans. Ultimately, this situation manifested because the Roman troops were geared for close combat in the open setting, and the clever use of the forest by Arminius and his warriors led to what can only be considered a Roman tragedy – a tragedy that would not have occurred, and in fact likely have been reversed, if the battle was undertaken in the open (Clayton, 2012; Murdoch, 2006).

Varus is defeated within the forest of Teutoburg, as is depicted through this illustration. Source: Heritage History.

The use of trees during conflict has also given rise to their use for hanging and other forms of execution (Stone, 2008). Certainly a macabre aspect of how warfare – and on a broader scale acts of genocide – ties man to the arboreal world, it is nonetheless an important point to consider, as it highlights how the tree, as a tool, has uses that extend beyond those aforementioned. In the genocide that plagued Cambodia from 1975-1979, for instance, the Khmer Rouge, who were followers of the community party led by Pol Pot, are said to have thrown children against trees until they died – because trees were cheaper than bullets. In these cases, Tyner (2009) remarks, the children were executed because their parents were considered enemies of the state. Lynching in the US, between 1889 to 1930, constitutes another form of warfare; albeit more a form of societal warfare, which can occur even during peacetime. During this period, an estimated 3,724 individuals were lynched, and before usually being hung from a tree and displayed for all to see the pursued individual was tortured, humiliated, dragged, and sometimes burned in front of potentially many thousands of onlookers (Dutton, 2007). In the UK, trees have also been the site of hangings; for example, for the execution of ‘rebels’ – whatever this loose term was deemed to define at the time by the ruling powers (Barnes & Williamson, 2011).

Running concurrently to the very human dynamics of wars and forests, exist more ecologically-based aspects worthy of consideration in this section. Principally, and notably over the past decades, one can identify the desire to safeguard forest biodiversity during times of war, by incorporating forest conservation into military projects (Machlis & Hanson, 2008). As ascertained prior to this point, the demands placed upon the forest in such a period unrest is possibly incredibly great, and particularly when the forest is being harvested for its timber, is being cleared to flush out a hiding enemy or to remove a hiding place, or the war is taking place largely within the forest (Reuveny et al., 2010). In recent years, tropical forests over South America and Africa have been the site of armed conflicts between the state and drug cartels, rebels, or otherwise, and McNeely (2003) astutely observes that such forests and their ecosystems can therefore be considered victims of war. Where these forests are considered hotspots for biodiversity, the impact is certainly markedly more severe and concerning for the scientific community (Hanson et al., 2009).

However, war is not always bad for forests. Where armed conflicts drive the general populace away, if the forests are not being actively utilised for resource to fuel the conflict, then they can undoubtedly benefit from the sudden drop in human pressures. Of course, the displaced populace is not purged from existence, and therefore where refugee camps associated with the conflict are constructed within – or adjacent to – forests, there can be a huge spike in deforestation. A pertinent example of such a phenomenon is when the Rwandan civil war displaced large numbers of people, who settled in the Democratic Republic of Congo in refugee camps and caused over 300km² of deforestation to nearby forests (Machlis & Hanson, 2008).


Barnes, G. & Williamson, T. (2011) Ancient Trees in the Landscape: Norfolk’s arboreal heritage. UK: Windgather Press.

Clayton, A. (2012) Warfare in Woods and Forests. USA: Indiana University Press.

Hanson, T., Brooks, T., da Fonseca, G., Hoffmann, M., Lamoreux, J., Machlis, G., Mittermeier, C., Mittermeier, R., & Pilgrim, J. (2009) Warfare in biodiversity hotspots. Conservation Biology. 23 (3). p578-587.

Leete, J. (2014) The New Forest at War: Revised and Updated. UK: Sabrestorm.

Machlis, G. & Hanson, T. (2008) Warfare ecology. BioScience. 58 (8). p33-40.

Murdoch, A. (2006) Rome’s Greatest Defeat: Massacre in the Teutoburg Forest. UK: Sutton Publishing.

Nelson, A. (2005) Cold War Ecology: Forests, Farms, & People in the East German Landscape, 1945-1989. USA: Yale University Press.

Reuveny, R., Mihalache-O’Keef, A., & Li, Q. (2010) The effect of warfare on the environmentThe effect of warfare on the environment. Journal of Peace Research. 47 (6). p749-761.

Rush, R. (2001) Hell in Hürtgen Forest: The Ordeal and Triumph of an American Infantry Regiment. USA: University Press of Kansas.

Stone, D. (2008) The Historiography of Genocide. UK: Palgrave Macmillan.

Tyner, J. (2009) War, Violence, and Population: Making the Body Count. USA: The Guilford Press.

Whiting, C. (2000) Battle of Hürtgen Forest. UK: Spellmount.

Trees, forests and warfare

Trees in the ecosystem pt III: Trees & birds

Trees, and more specifically groups of trees, are of significant importance to avifauna. Their provisioning of food, either directly (fruits, nuts, blossom) or indirectly (attracting insects and other types of prey), in addition to their ability to act as a nesting site, roosting site, or otherwise, makes tree presence absolutely crucial to a successful and healthy bird population. Of course, different bird species will respond favourably to different tree species and stand structures, and this – amongst other aspects – is discussed below.

As alluded to above, the structure of a woodland stand will have a marked impact upon bird species present within a site. For example, active coppice woodlands will provide habitat to bird species not frequently (if at all) found in old-growth stands or even coppice of over 11-12 years since the last cycle (Fuller & Green, 1999), though wood pastures, forest glades, and even agricultural fields bordering woodland may provide niche habitat for particular birds, of which many may be associated with grasslands and the transitional zone (ecotone) between grassland and woodland (Costa et al., 2014; Hartel et al., 2014; Hinsley et al., 2015) – including the nightingale (Luscinia megarhynchos) and the chiffchaff (Phylloscopus collybita), in the UK.

A nightingale perched upon a tree branch. Source: Wikimedia.

Stand structure will also impact upon the growth of young chicks, with some species growing better in older stands and others in younger stands (Hinsley et al., 2002). This is due to some bird species feeding up in the crown of a tree, whilst others forage near to ground level. For ground foraging birds, there will likely be a lack food sources available, where canopy closure has occurred; as will there be a lack of ground-cover for nesting (Fuller & Green, 1999). Similar conditions can however be created by grazing mammals, with deer being a notable example in the UK and North America (Gill & Fuller, 2007; McShea & Rappole, 2000). Furthermore, ground-nesting and ground-foraging birds are also more sensitive to disturbance, and therefore their presence may also be limited in high-traffic areas and locations where predators (and herbivores – including deer and other grazing animals) are found in abundance (Ford et al., 2001; Fuller, 2001; Martin & McIntyre, 2007; Schmidt & Whelan, 1999). Vehicular traffic may also be an issue, and notably when a woodland site runs adjacent to a busy road (Reijnen et al., 1995). Research has therefore suggested that established woodland sites, free of major disturbance and possessing greater structural diversity than succeeding woodlands or coppiced woodlands, will provide for a greater array of bird species (Gil-Tena et al., 2007; Hinsley et al., 2009), though even amongst structurally similar habitats the species composition of a site may have a marked impact upon bird species diversity (Arnold, 1988).

In fact, a greater mix of tree species may bolster bird diversity, as was demonstrated by Díaz (2006) when bird species in pinewoods and oakwoods were found to be lower than in a stand containing both species. By a similar token, species composition may impact upon bird species that forage amongst foliage for arthropods and other food sources. Investigations by Robinson & Holmes (1984), for instance, demonstrated that the distribution of foliage within the crown of a tree will impact upon the foraging ability of particular birds; as will, but only at times, the size (and other characteristics) of foliage. Similarly, as particular tree species will attract certain arthropods, the species composition of a stand will impact upon the constituent bird species and their abundance. Thus, a mosaic of habitats that is mainly – but not at all exclusively – mature and mixed woodland may be most preferable if seeking to attract many species of bird. Such woodland need not be extensive in canopy cover however, as wood pastures attract such an abundance of insects that insectivorous birds can be found in great abundance, assuming the land is not treated with pesticides (Ceia & Ramos, 2016).

Building upon the concept of stand structure, the presence of standing deadwood is also important for birds. Whilst cycles of management are beneficial for some species, those that rely on old-growth stands with minimal management intervention are heavily reliant upon standing deadwood as a source of habitat (Drapeau et al., 2009). Those species which nest within recently-dead snags (or dead portions of living trees), including the woodpecker (Smith, 2007) – though also many species of secondary (successional) cavity-nesting species – will far more readily be found in stands of significant age that contain tracts of large (over 30cm DBH) potential habitat (Bednarz et al., 2004; Remm et al., 2006). Granted, not all standing deadwood is equal. For example, in the forests of British Columbia, USA, woodpeckers will preferentially frequent trembling aspen (Populus tremuloides), to the point that 95% of all cavity nests are found within this species – even in spite of its limited abundance within forest stands (Martin et al., 2004). Similarly, forest edge standing deadwood may be more preferable for some cavity-nesting birds (Remm et al., 2006), and at times standing deadwood created through recent forest fires may be most suitable (Nappi & Drapeau, 2011; Saab et al., 2004). Therefore, post-fire salvage logging may be detrimental to cavity-nesting birds (Hutto & Gallo, 2006). It should however be noted that not all cavity-nesting birds will create their own cavities from sites of decaying wood, and may instead use natural cavities that have formed at the branch junctions of snags (Remm et al., 2006).

A parakeet making this cavity within a large branch of London plane its nesting site. Source: Authoor, 2017.

The benefits of standing deadwood extend beyond the mere provisioning of viable nesting sites, however. They also act as suitable feeding platforms for many bird species, again including the woodpecker. In particular, decaying snags with lower wood densities will provide the suitable conditions for foraging (Farris et al., 2004; Weikel & Hayes, 1999). This is because such decaying snags attract saproxylic insects, which are viable sources of food for birds (Drapeau et al., 2009). However, this does not necessarily mean that such snags should be extensively degraded, as research has also suggested that snags with only some deterioration (through fungal decay and fire damage) are optimal for foraging (Nappi et al., 2003; Nappi et al., 2010). Without question, larger snags will normally provide for greater foraging potential, and not only because of the greater diversity of foraging site types (small branches, large branches, and the stem), but also because of the greater surface area upon which birds (including woodpeckers) may forage (Smith, 2007). By a similar token, snags can also be used for perching and communicating (Lohr et al., 2002), which could be of advantage to predatory birds and breeding birds, respectively.

Coarse woody debris (fallen deadwood) upon the woodland floor can also be of use to bird species. Lohr et al. (2002) identify such downed woody debris as being important for foraging, perching, and communicating; albeit at a generally lesser rate than standing deadwood (snags), though not always (Spetich et al., 1999). Understorey bird species may also utilise downed stems for nesting. Where coarse woody debris is removed therefore, bird species diversity and population abundance will almost certainly suffer (Riffell et al., 2011).

A bird that has used these Ganoderma brackets, which themselves reside between two buttress root of horse chestnut, as a nesting site. Source: Author, 2016.

Of course, it is not only standing (snags) and fallen deadwood (coarse woody debris) that are of benefit, but also the decaying wood of living trees. Typically, it will be trees with more extensive internal decay and thus thinner strips of functional sapwood that will be more preferable to cavity-nesting birds (Losin et al., 2006). However, it is the larger individuals within a stand that will again be more readily frequented, with research by Conner et al. (1994) finding that the red-cockaded woodpecker (Leuconotopicus borealis) requires decaying heartwood of 15cm in diameter (or greater) to form a viable nesting site. Such extensive and suitable heartwood can usually only be found in older trees (Hooper et al., 1991), which therefore outlines the importance of conserving old-growth stands and retaining mature individuals during harvesting operations. In fact, red-cockaded woodpeckers will seek-out older trees wherever possible, because of the greater heartwood extent found within such trees (Rudolph & Conner, 1991).

Furthermore, akin to standing deadwood, not all trees are equal in their provisioning of viable habitat for cavity-nesting birds. Certain bird species may favour particular trees that are being decayed by specific heart-rotting fungi. Using the red-cockaded woodpecker as an example again, it is understood that Pinus spp. being decayed by the heart rot fungus Porodaedalea pini (syn: Phellinus pini) are highly desirable sites for nesting for the species (Jackson & Jackson, 2004). Similarly, the great spotted woodpecker (Dendrocopos major) will commonly frequent large oaks complete with large tracts of decaying heartwood and fungal sporophores (Pasinelli, 2007).

Birds may also utilise the tree’s flower (florivore), fruit (frugivore), and seed crops (granivore), as a source of food. In fact, birds are considered the most significant dispersal agent of a tree’s fruit and seed crops, which is testament to the important relationship birds and trees have in this regard (Howe & Primack, 1975; Sedgley & Griffin, 1989). Certain birds are even associated largely with specific tree species, such as how the Eurasian jay’s (Garrulus glandarius) main food source is the acorn of the oak (Quercus spp.) (Vera, 2000). Open-grown mature trees may typically harbour the greatest crops (Green, 2007), and parklands, pastures (Galindo-González et al., 2000), savannas (Dean et al., 1999), and even gardens and orchards (Genghini et al., 2006; Herzog et al., 2005) may be home to many such trees.

Eurasian jay acorn Quercus
A jay proudly carrying an acorn. Source: Phil Winter.

Unfortunately, pressure on these environments, be it in the form of grazing, chemical applications (particularly in orchards), or simply human activities, has led to declines in constituent bird populations, in some instances (Bishop et al., 2000; Elliott et al., 1994; Thiollay, 2006), though historically orchards amongst extensively-grazed wood pasture were highly valuable for bird species, which would feed upon the abundance of insects (Barnes & Williamson, 2011; Oppermann, 2014). Beyond the open-grown tree however, copses, woodlands, and great vast forests all have the ability to harbour birds, courtesy of their crops. Secondary and regenerating stands may perhaps provide for the greatest abundance and diversity of food for birds, given that the greater light levels provide suitable conditions for a wider range of plant and tree species that flower and subsequently produce fruits (Martin, 1985).

Additionally, the better light conditions mean such fruiting species are likely to be healthier and produce bigger and more plentiful fruits, which is of importance to foraging birds that seek out proteins, fats and carbohydrates from tree crops (Sedgley & Griffin, 1989) and insects attracted to flowers. One example of this would be how the plentiful silver birch (Betula pendula) stands, in Belfairs Wood (Essex, UK) during the 1970s, over-masted quite significantly and consequently attracted very large numbers of redpoll and finch (Carduelis spp.), which all foraged eagerly for the seed. By-and-large, as birds will seek-out fruits and seeds that are larger than average and in healthy supply upon a tree (Foster, 1990; Wheelwright, 1993), it is perhaps not surprising that such regenerating stands are highly desirable. Granted, closed-canopy and late-successional stands also harbour tree crops (including the acorns of Quercus spp. and keys of Fraxinus spp.) that are of huge value to birds (Greig-Smith & Wilson, 1985; Koenig & Heck, 1988). However, the poor soils (nutritionally and hydrologically) of many mature woodlands adjacent to agricultural landscapes had led to – at least in Australia – declines in fruit and seed crops and, as a result, bird population density (Watson, 2011).

Moving away from the woodland and forest stands, though not entirely returning to open-grown trees, we can observe how trees within field hedgerows can be of huge benefit to birds, as can trees within agricultural windbreaks. Benefit may come in the form of landscape connectivity, where hedgerows and windbreaks act as corridors connecting woodland patches to one-another (Davies & Pullin, 2007; Harvey, 2000; Leon & Harvey, 2006; Morelli, 2013), though they may also be used – albeit perhaps less frequently now, courtesy of increased hedgerow management (at least, in the UK) – as nesting sites and foraging sites (Benton et al., 2003; Netwon, 2004). Grass buffers either side of the hedgerow may aid with suitability for birds, as may the presence of a greater number of large trees within a hedgerow (Hinsley & Bellamy, 2000; Herzog et al., 2005).

Within urban environments, the presence of trees and hedgerows adjacent to busy roads can however have a negative impact upon birds, by increasing mortality rates (usually associated with birds flying out into oncoming traffic). Research by Orłowski (2008) concludes as such. Of course, the presence of trees is also of benefit, much like within farmland hedgerows. Urban street trees, and also those within gardens, can improve landscape connectivity, allowing for bird species to travel between more significant areas of tree cover found in parklands and urban woodlands (Sanesi et al., 2009). In particular, connectivity to older parks with remnant woodland fragments will support a greater diversity of bird species (Fernández‐Juricic, 2000). The advent of large coniferous tree (and hedge) planting in many urban areas, courtesy of the planting of the cypress and other conifers (including Chamaecyparia lawsoniana, Cupressus macrocarpa, and x Cupressocyparis leylandii), has also led to an increase in resident bird populations and primarily because of the over-winter shelter such coniferous tree species provide (Jokimäki & Suhonen, 1998; Melles et al., 2003; Rutz, 2008; Savard et al., 2000). Furthermore, sheltered trees within the urban landscape that have abundant fruit and seed crops can be of huge benefit to birds, by providing essential food sources in an otherwise somewhat undesirable landscape. For such reasons, urban parks and woodlands may potentially provide the best conditions for certain feeding birds, though large gardens complete with dense vegetation may also be of great importance. Tree-lined streets may also be critical, and notably so if trees are large, have dense crowns, and have an edible fruit or seed crop.

Large leyland cypress specimens inter-planted with poplar cultivars offer suitable nesting sites in this harsh industrial zone. Source: Author, 2016.


Arnold, G. (1988) The Effects of Habitat Structure and Floristics on the Densities of Bird Species in Wandoo Woodland. Wildlife Research. 15 (5). p499-510.

Barnes, G. & Williamson, T. (2011) Ancient Trees in the Landscape: Norfolk’s arboreal heritage. UK: Windgather Press.

Bednarz, J., Ripper, D., & Radley, P. (2004) Emerging concepts and research directions in the study of cavity-nesting birds: keystone ecological processes. The Condor. 106 (1). p1-4.

Benton, T., Vickery, J., & Wilson, J. (2003) Farmland biodiversity: is habitat heterogeneity the key?. Trends in Ecology & Evolution. 18 (4). p182-188.

Bishop, C., Ng, P., Mineau, P., Quinn, J., & Struger, J. (2000) Effects of pesticide spraying on chick growth, behavior, and parental care in tree swallows (Tachycineta bicolor) nesting in an apple orchard in Ontario, Canada. Environmental Toxicology and Chemistry.  19 (9). p2286-2297.

Ceia, R. & Ramos, J. (2016) Birds as predators of cork and holm oak pests. Agroforestry Systems. 90 (1). p159-176.

Costa, A., Madeira, M., Santos, J., & Plieninger, T. (2014) Recent dynamics of evergreen oak wood-pastures in south-western Iberia. In Hartel, T. & Plieninger, T. (eds.) European wood-pastures in transition: A social-ecological approach. UK: Earthscan.

Davies, Z. & Pullin, A. (2007) Are hedgerows effective corridors between fragments of woodland habitat? An evidence-based approach. Landscape Ecology. 22 (3). p333-351.

Dean, W., Milton, S., & Jeltsch, F. (1999) Large trees, fertile islands, and birds in arid savanna. Journal of Arid Environments. 41 (1). p61-78.

Díaz, L. (2006) Influences of forest type and forest structure on bird communities in oak and pine woodlands in Spain. Forest Ecology and Management. 223 (1). p54-65.

Drapeau, P., Nappi, A., Imbeau, L., & Saint-Germain, M. (2009) Standing deadwood for keystone bird species in the eastern boreal forest: managing for snag dynamics. The Forestry Chronicle. 85 (2). p227-234.

Elliott, J., Martin, P., Arnold, T., & Sinclair, P. (1994) Organochlorines and reproductive success of birds in orchard and non-orchard areas of central British Columbia, Canada, 1990–91. Archives of Environmental Contamination and Toxicology. 26 (4). p435-443.

Farris, K., Huss, M., & Zack, S. (2004) The role of foraging woodpeckers in the decomposition of ponderosa pine snags. The Condor. 106 (1). p50-59.

Fernández‐Juricic, E. (2000) Bird community composition patterns in urban parks of Madrid: the role of age, size and isolation. Ecological Research. 15 (4). p373-383.

Ford, H., Barrett, G., Saunders, D., & Recher, H. (2001) Why have birds in the woodlands of Southern Australia declined?. Biological Conservation. 97 (1). p71-88.

Foster, M. (1990) Factors influencing bird foraging preferences among conspecific fruit trees. The Condor. 92 (4). p844-854.

Fuller, R. (2001) Responses of woodland birds to increasing numbers of deer: a review of evidence and mechanisms. Forestry. 74 (3). p289-298.

Fuller, R. & Green, G. (1998) Effects of woodland structure on breeding bird populations in stands of coppiced lime (Tilia cordata) in western England over a 10-year period. Forestry. 71 (3). p199-218.

Galindo‐González, J., Guevara, S., & Sosa, V. (2000) Bat‐and bird‐generated seed rains at isolated trees in pastures in a tropical rainforest. Conservation Biology. 14 (6). p1693-1703.

Genghini, M., Gellini, S., & Gustin, M. (2006) Organic and integrated agriculture: the effects on bird communities in orchard farms in northern Italy. Biodiversity & Conservation. 15 (9). p3077-3094.

Gil-Tena, A., Saura, S., & Brotons, L. (2007) Effects of forest composition and structure on bird species richness in a Mediterranean context: implications for forest ecosystem management. Forest Ecology and Management. 242 (2). p470-476.

Gill, R. & Fuller, R. (2007) The effects of deer browsing on woodland structure and songbirds in lowland Britain. Ibis. 149 (2). p119-127.

Greig-Smith, P. & Wilson, M. (1985) Influences of seed size, nutrient composition and phenolic content on the preferences of bullfinches feeding in ash trees. Oikos. 44 (1). p47-54.

Green, T. (2007) Stating the obvious: the biodiversity of an open-grown tree – from acorn to ancient. In Rotherham, I. (ed.) The History, Ecology, and Archaeology of Medieval Parks and Parklands. UK: Wildtrack Publishing.

Hartel, T., Hanspach, J., Abson, D., Máthé, O., Moga, C., & Fischer, J. (2014) Bird communities in traditional wood-pastures with changing management in Eastern Europe. Basic and Applied Ecology. 15 (5). p385-395.

Harvey, C. (2000) Colonization of agricultural windbreaks by forest trees: effects of connectivity and remnant trees. Ecological Applications. 10 (6). p1762-1773.

Herzog, F., Dreier, S., Hofer, G., Marfurt, C., Schüpbach, B., Spiess, M., & Walter, T. (2005) Effect of ecological compensation areas on floristic and breeding bird diversity in Swiss agricultural landscapes. Agriculture, Ecosystems & Environment. 108 (3). p189-204.

Hinsley, S. & Bellamy, P. (2000) The influence of hedge structure, management and landscape context on the value of hedgerows to birds: a review. Journal of Environmental Management. 60 (1). p33-49.

Hinsley, S., Hill, R., Fuller, R., Bellamy, P., & Rothery, P. (2009) Bird species distributions across woodland canopy structure gradients. Community Ecology. 10 (1). p99-110.

Hinsley, S., Fuller, R., & Ferns, P. (2015) The Changing Fortunes of Woodland Birds in Temperate Europe. In Kirby, K. & Watkins, C. (eds.) Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes. UK: CABI.

Hooper, R., Lennartz, M., & Muse, H. (1991) Heart rot and cavity tree selection by red-cockaded woodpeckers. The Journal of Wildlife Management. 55 (2). p323-327.

Howe, H. & Primack, R. (1975) Differential seed dispersal by birds of the tree Casearia nitida (Flacourtiaceae). Biotropica. 7 (4). p278-283.

Hutto, R. & Gallo, S. (2006) The effects of postfire salvage logging on cavity-nesting birds. The Condor. 108 (4). p817-831.

Jackson, J. & Jackson, B. (2004) Ecological relationships between fungi and woodpecker cavity sites. The Condor. 106 (1). p37-49.

Jokimäki, J. & Suhonen, J. (1998) Distribution and habitat selection of wintering birds in urban environments. Landscape and Urban Planning. 39 (4). p253-263.

Koenig, W. & Heck, M. (1988) Ability of two species of oak woodland birds to subsist on acorns. The Condor. 90 (3). p705-708.

Leon, M. & Harvey, C. (2006) Live fences and landscape connectivity in a neotropical agricultural landscape. Agroforestry Systems. 68 (1). p15-26.

Lohr, S., Gauthreaux, S., & Kilgo, J. (2002) Importance of coarse woody debris to avian communities in loblolly pine forests. Conservation Biology. 16 (3). p767-777.

Losin, N., Floyd, C., Schweitzer, T., & Keller, S. (2006) Relationship between aspen heartwood rot and the location of cavity excavation by a primary cavity-nester, the Red-naped Sapsucker. The Condor. 108 (3). p706-710.

Martin, K., Aitken, K, & Wiebe, K. (2004) Nest sites and nest webs for cavity-nesting communities in interior British Columbia, Canada: nest characteristics and niche partitioning. The Condor. 106 (1). p5-19.

Martin, T. (1985) Selection of second-growth woodlands by frugivorous migrating birds in Panama: an effect of fruit size and plant density?. Journal of Tropical Ecology. 1 (2). p157-170.

Martin, T. & McIntyre, S. (2007) Impacts of livestock grazing and tree clearing on birds of woodland and riparian habitats. Conservation Biology. 21 (2). p504-514.

McShea, W. & Rappole, J. (2000) Managing the abundance and diversity of breeding bird populations through manipulation of deer populations. Conservation Biology. 14 (4). p1161-1170.

Melles, S., Glenn, S. and Martin, K., 2003. Urban bird diversity and landscape complexity: species-environment associations along a multiscale habitat gradient. Conservation Ecology. 7 (1). p1-22.

Morelli, F. (2013) Relative importance of marginal vegetation (shrubs, hedgerows, isolated trees) surrogate of HNV farmland for bird species distribution in Central Italy. Ecological Engineering. 57 (1). p261-266.

Nappi, A. & Drapeau, P. (2011) Pre-fire forest conditions and fire severity as determinants of the quality of burned forests for deadwood-dependent species: the case of the black-backed woodpecker. Canadian Journal of Forest Research. 41 (5). p994-1003.

Nappi, A., Drapeau, P., Giroux, J., & Savard, J. (2003) Snag use by foraging black-backed woodpeckers (Picoides arcticus) in a recently burned eastern boreal forest. The Auk. 120 (2). p505-511.

Nappi, A., Drapeau, P., Saint-Germain, M., & Angers, V. (2010) Effect of fire severity on long-term occupancy of burned boreal conifer forests by saproxylic insects and wood-foraging birds. International Journal of Wildland Fire. 19 (4). p500-511.

Newton, I. (2004) The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis. 146 (4). p579-600.

Oppermann, R. (2014) Wood-pastures as examples of European high nature value landscapes. In Hartel, T. & Plieninger, T. (eds.) European wood-pastures in transition: A social-ecological approach. UK: Earthscan.

Orłowski, G. (2008) Roadside hedgerows and trees as factors increasing road mortality of birds: implications for management of roadside vegetation in rural landscapes. Landscape and Urban Planning. 86 (2). p153-161.

Pasinelli, G. (2007) Nest site selection in middle and great spotted woodpeckers Dendrocopos medius & D. major: implications for forest management and conservation. Biodiversity and Conservation. 16 (4). p1283-1298.

Reijnen, R., Foppen, R., Braak, C., & Thissen, J. (1995) The effects of car traffic on breeding bird populations in woodland. III. Reduction of density in relation to the proximity of main roads. Journal of Applied Ecology. 32 (1). p187-202.

Remm, J., Lohmus, A., & Remm, K. (2006) Tree cavities in riverine forests: What determines their occurrence and use by hole-nesting passerines?. Forest Ecology and Management. 221 (1). p267-277.

Riffell, S., Verschuyl, J., Miller, D., & Wigley, T. (2011) Biofuel harvests, coarse woody debris, and biodiversity–a meta-analysis. Forest Ecology and Management. 261 (4). p878-887.

Robinson, S. & Holmes, R. (1984) Effects of plant species and foliage structure on the foraging behavior of forest birds. The Auk. 101 (4). p672-684.

Rudolph, D. & Conner, R. (1991) Cavity tree selection by red-cockaded woodpeckers in relation to tree age. The Wilson Bulletin. 103 (3). p458-467.

Rutz, C. (2008) The establishment of an urban bird population. Journal of Animal Ecology. 77 (5). p1008-1019.

Saab, V., Dudley, J., & Thompson, W. (2004) Factors influencing occupancy of nest cavities in recently burned forests. The Condor. 106 (1). p20-36.

Sanesi, G., Padoa-Schioppa, E., Lorusso, L., Bottoni, L., & Lafortezza, R. (2009) Avian ecological diversity as an indicator of urban forest functionality. Results from two case studies in Northern and southern Italy. Journal of Arboriculture. 35 (2). p80-86.

Savard, J., Clergeau, P., & Mennechez, G. (2000) Biodiversity concepts and urban ecosystems. Landscape and Urban Planning. 48 (3). p131-142.

Schmidt, K. & Whelan, C. (1999) Nest predation on woodland songbirds: when is nest predation density dependent?. Oikos. 87 (1). p65-74.

Sedgley, M. & Griffin, A. (1989) Sexual Reproduction of Tree Crops. UK: Academic Press.

Smith, K. (2007) The utilization of dead wood resources by woodpeckers in Britain. Ibis.  149 (2). p183-192.

Spetich, M., Shifley, S., & Parker, G. (1999) Regional distribution and dynamics of coarse woody debris in Midwestern old-growth forests. Forest Science. 45 (2). p302-313.

Thiollay, J. (2006) Large bird declines with increasing human pressure in savanna woodlands (Burkina Faso). Biodiversity & Conservation. 15 (7). p2085-2108.

Vera, F. (2000) Grazing Ecology and Forest History. UK: CABI Publishing.

Watson, D. (2011) A productivity-based explanation for woodland bird declines: poorer soils yield less food. Emu. 111 (1). p10-18.

Weikel, J. & Hayes, J. (1999) The foraging ecology of cavity-nesting birds in young forests of the northern coast range of Oregon. The Condor. 101 (1). p58-66.

Wheelwright, N. (1993) Fruit size in a tropical tree species: variation, preference by birds, and heritability. Vegetatio. 107 (1). p163-174.

Trees in the ecosystem pt III: Trees & birds

Trees in the ecosystem pt I: Trees & fish

The extent of attention as to exactly how critical trees are for fish populations is unfortunately not all that significant (in comparison to the study or trees and birds, for example), though this is not necessarily surprising – this is perhaps because fish spend their lives largely under water, and thus their presence is not necessarily recognised to the degree it would be if fish were land-based organisms. However, there is certainly a healthy array of research that has been undertaken into this relationship of trees and fish within the forest ecosystem, as is demonstrated below.

Many undisturbed pools (areas of slow-moving or still water within in rivers and streams) in forests are either created or enhanced by the presence of deadwood (as either driftwood or sunken wood). Such deadwood presence can also raise water levels locally and create a diverse range of aquatic habitats (Hodge & Peterken, 1998) by damming up rivers and streams, and reducing flow velocity (Barbour et al., 2001; Gippel et al., 1996). Large woody debris (including fallen stems and large branches) is particularly critical in this regard, and research has shown that nearly 30% of pools within a stream or river may be created by such woody debris (Mossop & Bradford, 2004).

A gathering of many fallen branches significantly obstructs the flow of this stream through the New Forest, UK. Such obstruction creates niche habitats on both sides of the log jam. Source: Author (2016).

Other research has, whilst not focussing on large woody debris exclusively, identified that as much as 75% of all pools may be created from submerged woody debris (Robison & Beschta, 1990a). Through the creation of these habitats, fish populations can increase, as their range of viable habitat increases – notably for feeding and spawning (Harvey, 1998). However, because even the largest of woody debris will likely not persist for over 50 years, there is a need for a continuous replenishment if streams and rivers are to retain the presence of deadwood-induced pools (Hyatt & Naiman, 2001). When pools are instead created by wood jams, which are made of small (and sometimes also large) branches and stems clustered together, their average viable retention time may only be between 2-3 years (Lisle, 1986). Again, a need for a constant supply of such deadwood is necessary, and this should obviously mean management practices retain trees that can constantly provide for such woody material (Robison & Beschta, 1990b).

Driftwood may be particularly beneficial for fish populations, as not only will its presence control flow velocity, but also protect its banks from erosion, create waterfalls and pools, and thus provide protection for fish spawning as well as increasing habitat diversity (Gurnell et al., 2002). Additionally, driftwood can provide hiding places for species of fish, assisting either in their predatory pursuits or in evading predation (Crook & Robertson, 1999; Werneyer & Kramer, 2005).

Sunken (or partially submerged) deadwood, for those fish species which are insectivorous, can also be highly valuable (Barbour et al., 2001). The wood’s provision of habitat for invertebrates means there is a potential abundance of prey for such insectivorous fish (O’Connor, 1992). A study into the effects of deforestation on wood input levels into woodland stream environments there unsurprisingly showed how reduced amounts of sunken deadwood led to reduced fish diversity and abundance (Wright & Flecker, 2004). In such wood-void streams, wood-eating fish (such as certain species of catfish, whilst not ‘true’ xylivores) may also suffer (German & Bittong, 2009; Lujan et al., 2011), though the loss of diversity in a stream (or river) environment, both because of reduced wood presence and the faster flow associated with such a lack of wood, may also have wider implications for fish species overall (Lancaster et al., 2001; Shields & Smith, 2002; Tsui et al., 2000); particularly when it is understood that a lack of (large) sunken wood is indicative of a degraded stream (Shields et al., 2006). It is also suggested that sunken wood may aid with orientation for fish (Crook & Robertson, 1999).

Some significantly-decayed deadwood from a fallen willow (Salix sp.) will offer aquatic organisms – including fish – the opportunity to forage and seek shelter. Source: Author (2016).

Deadwood that has fallen and become (partially) submerged is also beneficial, as previously ascertained, because it creates pools within a stream or river ecosystem. These pools are areas of a stream or river where the flow is potentially very slow, and in the redwood forests of California downed trunks and branches of trees are considered to be crucial for constituent salmon populations (Barbour et al., 2001). Notably, in areas of steeper ground, this fallen deadwood can create tiers of pools, which actually enable salmon (that travel upstream to breed) to ascend up the river with more ease, as the salmon can ‘leap’ from one pool to another, and swim against a current with reduced velocity (which is critical for the enabling of salmon to conserve vital energy). These pools also reduce bankside erosion and catch up to 85% of sediment (which may amass behind a large branch or stem, though perhaps even more significantly amongst larger wood jams comprised of deadwood of varying sizes), ensuring the rate of sedimentation of the stream or river is slow and sustainable (Berg et al., 1998; Smith et al., 1993; Thevenet et al., 1998). This is important for the salmon, as females nest within the clean gravel beds in the riverbed, and any marked rate of sedimentation would prohibit this (Madej & Ozaki, 2009). These nesting sites may also, in fact, be located within close proximity to large pieces of woody debris (Senter & Pasternack, 2011). The very same deadwood can also support plant life, particularly when a large stem has fallen across a river, and therefore the plants growing atop the log can shade the river and keep the water cooler – this is also critical for the salmon, which prefer cooler waters (Welsh et al., 2001).

This willow has fallen but remains alive, offering a further and somewhat different aspect to the aquatic environment. Source: Author (2016).

Across the United States, in the Appalachian Mountains, research by Jones et al. (1999) has also revealed that the reduction in sedimentation created by fallen woody debris is critical for other species of fish (including the rainbow trout Oncorhynchus mykiss), that spawn in sediment-free riffles within the forest areas of the mountains. Furthermore, their research highlighted that deforestation along riparian zones as little as 1km in length can have massive adverse effects upon the quality of habitat for fish, due to the removal of the source of such critical deadwood. The associated re-growth after the felling, whilst still injecting debris into the water courses, cannot match the size of the debris from older-growth stands, and therefore rainbow trout occur less frequently and at lesser densities (Flebbe & Dolloff, 1995). Deforestation also increases the risk of severe flooding and high flow velocity within the Appalachian Mountains, which can both extensively decimate viable habitat for rainbow trout within the ecosystem. In part, this is because such factors eliminate the fauna that occupy the river bed, which the trout almost exclusively predate upon.

Beyond the realm of deadwood, the beneficial impacts of shading by large trees adjacent to such aquatic environments can also improve the suitability of the habitat for fish (Beschta, 1997; Larson & Larson, 1996). Using the redwood forests as an example once again, it has been recognised that large conifers that reside by a water course cast shade and thus reduce maximum temperatures and the risk of thermal pollution (Madej et al., 2006). Such cooler temperatures, much like how deadwood can support plants that shade and cool waters, protects critical nesting locations for female salmon, reduces the subsequent mortality of juvenile salmon, and improves their growth rate.

The shade this single hornbeam (Carpinus betulus) provides the river beneath, whilst not necessarily significant, will be of measurable benefit. Source: Author (2016).

Beyond California, the cooler waters created through significant (50-80%) canopy shading are equally as important for fish, for similar reasons (Broadmeadow & Nisbet, 2004; Broadmeadow et al., 2011; Swift Jr & Messer, 1971). Such canopy shade may also enable for rivers and streams to support macrophytes (plants growing in or near water), which can act as a food source for some fish species both directly and indirectly. Similarly, they can provide refuge for fish seeking shelter from predators (Pusey & Arthington, 2003). Therefore, retaining riparian trees is mandatory, if viable habitats for fish are to be protected (Young, 2000).

A line of willow and ash (Fraxinus excelsior) dresses the southern side of this river, meaning the water remains continually shaded throughout the day. Source: Author (2016).


Barbour, M., Lydon, S., Brochert, M., Popper, M., Whitworth, V., & Evarts, J. (2001) Coast Redwood: A Natural and Cultural History. USA: Cachuma Press.

Berg, N., Carlson, A., & Azuma, D. (1998) Function and dynamics of woody debris in stream reaches in the central Sierra Nevada, California. Canadian Journal of Fisheries and Aquatic Sciences. 55 (8). p1807-1820.

Beschta, R. (1997) Riparian shade and stream temperature: an alternative perspective. Rangelands. 19 (2). p25-28.

Broadmeadow, S., Jones, J., Langford, T., Shaw, P., & Nisbet, T. (2011) The influence of riparian shade on lowland stream water temperatures in southern England and their viability for brown trout. River Research and Applications. 27 (2). p226-237.

Broadmeadow, S. & Nisbet, T. (2004) The effects of riparian forest management on the freshwater environment: a literature review of best management practice. Hydrology and Earth System Sciences Discussions. 8 (3). p286-305.

Crook, D. & Robertson, A. (1999) Relationships between riverine fish and woody debris: implications for lowland rivers. Marine and Freshwater Research. 50 (8). p941-953.

Flebbe, P. & Dolloff, C. (1995) Trout use of woody debris and habitat in Appalachian wilderness streams of North Carolina. North American Journal of Fisheries Management. 15 (3). p579-590.

German, D. & Bittong, R. (2009) Digestive enzyme activities and gastrointestinal fermentation in wood-eating catfishes. Journal of Comparative Physiology B. 179 (8). p1025-1042.

Gippel, C., Finlayson, B., & O’Neill, I. (1996) Distribution and hydraulic significance of large woody debris in a lowland Australian river. Hydrobiologia. 318 (3). p179-194.

Gurnell, A., Piegay, H., Swanson, F., & Gregory, S. (2002) Large wood and fluvial processes. Freshwater Biology. 47 (4). p601-619.

Harvey, B. (1998) Influence of large woody debris on retention, immigration, and growth of coastal cutthroat trout (Oncorhynchus clarki clarki) in stream pools. Canadian Journal of Fisheries and Aquatic Sciences. 55 (8). p1902-1908.

Hodge, S. & Peterken, G. (1998) Deadwood in British forests: priorities and a strategy. Forestry. 71 (2). p99-112.

Hyatt, T. & Naiman, R. (2001) The residence time of large woody debris in the Queets River, Washington, USA. Ecological Applications. 11 (1). p191-202.

Jones, E., Helfman, G., Harper, J., & Bolstad, P. (1999) Effects of riparian forest removal on fish assemblages in southern Appalachian streams. Conservation Biology. 13 (6). p1454-1465.

Lancaster, S., Hayes, S., & Grant, G. (2001) Modeling sediment and wood storage and dynamics in small mountainous watersheds. Geomorphic Processes and Riverine Habitat. 4 (1). p85-102.

Larson, L. & Larson, S. (1996) Riparian shade and stream temperature: a perspective. Rangelands. 18 (4). p149-152.

Lisle, T. (1986) Effects of woody debris on anadromous salmonid habitat, Prince of Wales Island, southeast Alaska. North American Journal of Fisheries Management. 6 (4). p538-550.

Lujan, N., German, D., & Winemiller, K. (2011) Do wood‐grazing fishes partition their niche?: morphological and isotopic evidence for trophic segregation in Neotropical Loricariidae. Functional Ecology. 25 (6). p1327-1338.

Madej, M., Currens, C., Ozaki, V., Yee, J., & Anderson, D. (2006) Assessing possible thermal rearing restrictions for juvenile coho salmon (Oncorhynchus kisutch) through thermal infrared imaging and in-stream monitoring, Redwood Creek, California. Canadian Journal of Fisheries and Aquatic Sciences. 63 (6). p1384-1396.

Madej, M. & Ozaki, V. (2009) Persistence of effects of high sediment loading in a salmon-bearing river, northern California. Geological Society of America Special Papers. 451 (1). p43-55.

Mossop, B. & Bradford, M. (2004) Importance of large woody debris for juvenile chinook salmon habitat in small boreal forest streams in the upper Yukon River basin, Canada. Canadian Journal of Forest Research. 34 (9). p1955-1966.

O’Connor, N. (1992) Quantification of submerged wood in a lowland Australian stream system. Freshwater Biology. 27 (3). p387-395.

Pusey, B. & Arthington, A. (2003) Importance of the riparian zone to the conservation and management of freshwater fish: a review. Marine and Freshwater Research. 54 (1). p1-16.

Robison, E. & Beschta, R. (1990a) Coarse woody debris and channel morphology interactions for undisturbed streams in southeast Alaska, USA. Earth Surface Processes and Landforms. 15 (2). p149-156.

Robison, E. & Beschta, R. (1990b) Identifying trees in riparian areas that can provide coarse woody debris to streams. Forest Science. 36 (3). p790-801.

Senter, A. & Pasternack, G. (2011) Large wood aids spawning Chinook salmon (Oncorhynchus tshawytscha) in marginal habitat on a regulated river in California. River Research and Applications. 27 (5). p550-565.

Shields, F., Knight, S., & Stofleth, J. (2006) Large Wood Addition for Aquatic Habitat Rehabilitation in An Incised, Sand-Bed Stream, Little Topashaw Creek, Mississippi. River Research and Applications. 22 (7). p803-817.

Shields, F. & Smith, R. (1992) Effects of large woody debris removal on physical characteristics of a sand‐bed river. Aquatic Conservation: Marine and Freshwater Ecosystems. 2 (2). p145-163.

Smith, R., Sidle, R., Porter, P., & Noel, J. (1993) Effects of experimental removal of woody debris on the channel morphology of a forest, gravel-bed stream. Journal of Hydrology. 152 (1). p153-178.

Swift Jr, L. & Messer, J. (1971) Forest cuttings raise temperatures of small streams in the southern Appalachians. Journal of Soil and Water Conservation. 26 (3). p111-116.

Thevenet, A., Citterio, A., & Piegay, H. (1998) A new methodology for the assessment of large woody debris accumulations on highly modified rivers (example of two French piedmont rivers). Regulated Rivers: Research & Management. 14 (6). p467-483.

Tsui, K., Hyde, K., & Hodgkiss, I. (2000) Biodiversity of fungi on submerged wood in Hong Kong. Aquatic Microbial Ecology. 21 (3). p289-298.

Welsh H., Hodgson, G., Harvey, B., & Roche, M. (2001) Distribution of juvenile coho salmon in relation to water temperatures in tributaries of the Mattole River, California. North American Journal of Fisheries Management. 21 (3). p464-470.

Werneyer, M. & Kramer, B. (2005) Electric signalling and reproductive behaviour in a mormyrid fish, the bulldog Marcusenius macrolepidotus (South African form). Journal of Ethology. 23 (2). p113-125.

Wright, J. & Flecker, A. (2004) Deforesting the riverscape: the effects of wood on fish diversity in a Venezuelan piedmont stream. Biological Conservation. 120 (3). p439-447.

Young, K. (2000) Riparian zone management in the Pacific Northwest: who’s cutting what?. Environmental Management. 26 (2). p131-144.

Trees in the ecosystem pt I: Trees & fish

State forestry across the world – a list of books

State forestry is a political and ecological phenomenon that has occurred across all continents and almost all countries, though for all the history it should have trying to pin-point fine sources of information can be difficult. Therefore, in order to help any of you who are interested in this topic track down the information you need readily, I list below a series of books that delve intricately into the matter that I personally own copies of. Indeed, other books do exist, though I cannot attest to their content and thus won’t list them.

With reference to the links provided, I have tried to link to the original publisher where the book still seems to be widely aailable. However, for books that are seemingly out of print, I have linked to third-party seller sites, with other publishers and AbeBooks being the principal links, and followed by Amazon. Please be aware, however, that the links provided do not send you to the site selling the books for the lowest value.


Anderson, A., May, P., & Balick, M. (1991) The Subsidy from Nature: Palm Forests, Peasantry, and Development on an Amazon Frontier. Columbia University Press.

Burma (Myanmar)

Bryant, R. (1997) The Political Ecology of Forestry in Burma. Hurst & Company.


Matteson, K. (2015) Forests in Revolutionary France: Conservation, Community, and Conflict, 1669-1848.Cambridge University Press.

Sahlins, P. (1994) Forest Rites: The War of the Demoiselles in Nineteenth-Century France. Harvard University Press.

Whited, T. (2000) Forests and Peasant Politics in Modern France. Yale University Press.

Forests and Peasant Politics in Modern France


Nelson, A. (2005) Cold War Ecology: Forests, Farms, and People in the East German Landscape, 1945-1989. Yale University Press.

Cold War Ecology: Forests, Farms, & People in the East German Landscape

Wibe, S. & Jones, T. (1992) Forests: Market Intervention Failures – Five Case Studies. Earthscan.


Asante, M. (2005) Deforestation in Ghana: Explaining the Chronic Failure of Forest Preservation Policies in a Developing Country. University Press of America.

Great Britain

Miles, R. (1969) Forestry in the English Landscape. Faber & Faber.

Oosthoek, J. (2013) Conquering the Highlands: A history of the afforestation of the Scottish uplands. ANU Press.

Conquering the Highlands

Ryle, G. (1969) Forest Service: The First Forty-Five Years of the Forestry Commission of Great Britain. David & Charles.

Tsouvalis, J. (2000) A Critical Geography of Britain’s State Forests. Oxford University Press.

Wibe, S. & Jones, T. (1992) Forests: Market Intervention Failures – Five Case Studies. Earthscan.


Barton, G. (2002) Empire Forestry and the Origins of Environmentalism. Cambridge University Press.

Empire Forestry and the Origins of Environmentalism

Guha, R. (1989) The Unquiet Woods: Ecological Change and Peasant Resistance in the Himalaya. Oxford University Press.

Rajan, S. (2006) Modernizing Nature: Forestry and Imperial Eco-Development 1800-1950. Orient Longman.


McCarthy, J. (2006) The Fourth Circle: A Political Ecology of Sumatra’s Rainforest Frontier. Stanford University Press.

Peluso, N. (1992) Rich Forests, Poor People: Resource Control and Resistance in Java. University of California Press.

Israel / Palestine

Braverman, I. (2009) Planted Flags: Trees, Land, and Law in Israel/Palestine. Cambridge University Press.

Cohen, S. (1993) The Politics of Planting: Israeli-Palestinian Competition for Control of Land in the Jerusalem Periphery. University of Chicago Press.

The Politics of Planting

Lipschitz, N. & Biger, G. (2004) Green Dress for a Country: Afforestation in Eretz Israel 1850-1950. KKL.

Tal, A. (2013) All the Trees of the Forest: Israel’s Woodlands from the Bible to the Present. Yale University Press.


Wibe, S. & Jones, T. (1992) Forests: Market Intervention Failures – Five Case Studies. Earthscan.


Totman, C. (1989) The Green Archipelago: Forestry in Pre-Industrial Japan. Ohio University Press.


Mathews, A. (2011) Instituting Nature: Authority, Expertise, and Power in Mexican Forests. The MIT Press.

Instituting Nature


Hisham, M., Sharma, J., & Ngaiza, A. (1991) Whose Trees?: A People’s View of Forestry Aid. Panos Publications.


Barr, B. & Braden, K. (1988) The Disappearing Russian Forest: A Dilemma in Soviet Resource Management. Rowman & Littlefield.

Bonhomme, B. (2005) Forests, Peasants, and Revolutionaries: Forest Conservation and Organization in Soviet Russia, 1917-1929. Columbia University Press.

Brain, S. (2011) Song of the Forest: Russian Forestry and Stalinist Environmentalism, 1905-1953. University of Pittsburgh Press.

South Africa

Bennett, B. & Kruger, F. (2015) Forestry and Water Conservation in South Africa: History, Science and Policy. Australian National University Press.

Forestry and Water Conservation in South Africa: History, Science and Policy


Wibe, S. & Jones, T. (1992) Forests: Market Intervention Failures – Five Case Studies. Earthscan.


Hisham, M., Sharma, J., & Ngaiza, A. (1991) Whose Trees?: A People’s View of Forestry Aid. Panos Publications.


Wibe, S. & Jones, T. (1992) Forests: Market Intervention Failures – Five Case Studies. Earthscan.


Hisham, M., Sharma, J., & Ngaiza, A. (1991) Whose Trees?: A People’s View of Forestry Aid. Panos Publications.

Sunseri, T. (2009) Wielding the Ax: State Forestry and Social Conflict in Tanzania, 1820-2000. Ohio University Press.


Tegbaru, A. (1998) Forests, Farmers and the State: Environment and Resistance in Northeastern Thailand. Stockholm University.

Usher, A. (2009) Thai Forestry: A Critical History. Silkworm Books.

TF Cover create.indd
Thai Forestry: A Critical History

United States of America

Barton, G. (2002) Empire Forestry and the Origins of Environmentalism. Cambridge University Press.

Catton, T. (2016) American Indians and National Forests. University of Arizona Press.

Cohen, S. (2004) Planting Nature: Trees and the Manipulation of Environmental Stewardship in America. University of California Press.

Miller, C. (1997) American Forests: Nature, Culture, and Politics. University Press of Kansas.

Rutkow, E. (2012) American Canopy: Trees, Forests, and the Making of a Nation. Scribner.


Kwashirai, V. (2009) Green Colonialism in Zimbabwe 1890-1980. Cambria Press.

Green Colonialism in Zimbabwe 1890-1980
State forestry across the world – a list of books

A history of state forestry in Java, Indonesia

See part III of this series on state forestry in France here.

This phenomenon of the environmental and social misunderstandings of the peasantry and their forests can be further observed in Indonesia, and specifically upon the island of Java. This is because Indonesian state forestry practices began in Java with the State Forestry Corporation of Java in the 1870s, initiated by the Dutch colonial government, and emanated outward from the island into Indonesia more broadly.

The natural forests of Java have historically been a mix of a variety of tree species, including Altingia excelsa, Elaeocarpus macrocerus, Pinus merkusii, Tectona grandis, and Toona sureni. These forests have been the home of many millions of villagers, with their livelihoods being critically dependant upon the longevity and thus careful management of the forests and surrounding areas. Activities undertaken were rather similar to those undertaken in Uttarakhand, and in relation to construction teak (Tectona grandis) was the most favoured tree. Owned – pre-colonially – by Javanese kings and other elite individuals, villagers were permitted to use these forests under their decree, and often would there be a fair but entirely manageable (financial and free-labour) levy imposed on the villagers to maintain the functioning of the Javanese domains. However, because of the nature of forest communities, which were generally-speaking somewhat isolated from the king or other sovereign, villagers had a certain amount of freedom to ignore particular rules and regulations associated with their contract with the forest owner, though this of course varied with the extent of isolation – not that there were many limitations on how villagers could utilise the forest anyway, with only sparing and well-guarded royal forests and sacred groves being protected.

As far back at 1596, the Dutch, who would go on to rule Java from 1796, placed as important value on Javanese timber – notably teak. Javanese villagers, initially employed by the king or regional sultan under contract from the Dutch, though after 1743 generally directly employed by the Dutch, would harvest this timber, and sell it for purposes including ship building. Similar trade relations were also established with the Chinese. Subsequently, an informal ‘state’ forestry practice had actually begun centuries prior to the creation of the true state forestry department in 1865 (and the associated forest laws written between 1860-1934). However, the pre-colonial rule of Java was, as has been detailed, a relatively passive one, with villagers having a good degree of autonomy over their lives and forests. It was only when state forestry came into being, primarily for the cultivation of teak, that this began to drastically change, as the Dutch government sought to control and limit the relationship villagers had with their forests for the purposes of financial profit.

Notably, the tactics employed by the Dutch went about to usurp the villager and their relationship with the forest. In this sense, villagers had very little influence into the creation of teak plantations and felling operations, despite such operations having a sometimes quite drastic impact upon their livelihoods. One notable impact upon villagers, beyond the loss of forest cover, was their rapidly declining population of buffalo, for the buffalo were drafted by the Dutch to transport felled timber from the site of felling to the river or coast. Some of the largest teak trees, for example, required 80 buffalo to transport, and en route it was not uncommon for 10 of these buffalo to die. Because buffalo were used by villagers for cultivating land for agriculture, their population reduction had very real consequences for local food production.

An image, of unknown date, depicting two Indonesian workers felling a tree for its timber. Source: FAO.

By the same token, the environmental destruction associated with cleared forest areas, or even sparsely-forested areas after select trees were felled, had adverse impacts upon the lives of the villagers, and this occurred both before and after the onset of state forestry. The forest laws passed, notably those from 1860-1875, also saw large portions of land come under state ownership, which directly opposed cultural norms associated with villagers, in essence, owning the land surrounding their villages. These now state-owned areas were also policed, with quite harsh punishments for seemingly meagre ‘crimes’, which only became crimes – having once been customary villager rights – after the state itself detailed them as so under forest law. For instance, 45,000 people were arrested in 1905 for forest crimes, with most being for stealing wood – wood that was some decades earlier free to take.

Such changing of land ownership also limited the ability for villagers to farm in the surrounding landscape (by 1940, 3,057,200 hectares of land were state-owned), as did it hinder their ability to migrate to flee oppression and other undesirable circumstances, including excessive population growth and poor financial standing. However, with regards to farming, recently felled areas could be temporarily farmed (known as tumpang sari) by villagers with the permission of the state, for a period of between 1-3 years on average – the palette of crops was however limited to ones that would not have adverse impacts upon the trees regenerating within the area (usually teak or pine), either naturally or far more routinely artificially (from planted seed). Of course, this did mean that some villagers had to constantly follow the path of the forestry operations, in order to sustain their way of life; as did it sometimes require villagers to adhere to the demand of corrupt forest officials, who oversaw the allocation of tumpang sari land. Ultimately, the increasing levels of bureaucracy were alien to villagers, who were unaccustomed to such a myriad of regulations surrounding the use of forests.

A photo of a forester in central Java, taken between 1900-1940. Source: Wikimedia.

Such a situation was unfortunately only further exacerbated in World War II, when the Japanese took control of Java in 1942-1945 (Peluso, 1992). In this period state forestry operations, spearheaded by the Japanese Forest Service of Java, doubled in timber output compared to under the Dutch, and a ‘scorched earth’ policy by Dutch foresters and ransacking by Javanese villagers led to the forests deteriorating in quality quite massively in only three years – the effects are still observable today, in the landscape. Then, following Indonesian independence in 1949 (after four years of sometimes violent revolution), the new state only served to continue with state forestry operations (under the banner of the State Forestry Corporation), all whilst using the old Dutch laws (mostly almost verbatim – notably forest boundaries) and some of their foresters, albeit with recalibrated intentions that ‘better’ (a potentially malleable term, in this situation) served the nation’s populace.

In light of this, protest was certainly common from the late 1800s onward, and specifically from 1942-1966. The form a given protest took would however vary, with particular protests being non-violent (migration and ignoring the forest laws) and others certainly more violent (acts of crime, arson, and – more broadly – rebellion). Within the umbrella of protest, there are certain movements that deserve notable attention, however. One pertinent example is what was known as the Samin Movement, which was a social movement borne in 1890 but gained most notable momentum by 1907 when over 3,000 village families had adopted the ethos of the movement. This form of protest, founded by the peasant Surontiko Samin, was non-violent in approach and involved protesters purposely ignoring the instruction of state forest officials, for the purpose of safeguarding traditional customs of the Javanese villagers. However, because of the state’s pursuance of dissenting villagers, certain villager leaders did not support the movement, for fear of retribution if they did indeed show support. Therefore, some Saminists were exiled from their villagers, or excluded from communal practices.

A large teak (Tectona grandis) that the Samin Movement encouraged native Javans to utilise for their own needs, in place of supporting the Dutch forestry efforts. Source: Wikimedia.

Some decades later, during the second half of the 1940s (after the demise of the Japanese colonial government and at the inception of revolution, which itself ended in 1949), protests began to significantly rise in frequency and became far more organised, due to the adoption of a stance on forest politics by many political organisations. For example, in 1948, the Indonesian Communist Party and People’s Democratic Front attacked buildings and structures owned by the Forest Service, after it failed to amend forest policy in a manner that would more extensively benefit local people. These attacks caused rather extensive damage, and some main routes to transport timber were rendered impassable after bridges were destroyed. Two years prior, approximately 220,000 hectares of state-owned forest in Java was damaged (or destroyed) by protesting groups and individuals, and a further 110,000 hectares occupied by villagers and taken over or stripped for timber and firewood.

Alongside such protests, the Indonesian Forest Workers’ Union and Indonesian Peasants’ Front would support the villagers, in hope of returning Java’s forests to the people. In the few years following 1962, the Indonesian Forest Workers’ Union was most effective is achieving this aim of returning the state-owned forests to villagers; perhaps because nearly 25% (or 5,654,974 individuals) of the adult Indonesian peasantry were members. Granted, organisations did exist that were distinctly anti-communist, such as the Islamic Workers’ Union, who in fact battled with the Indonesian Communist Party over issues relating to state forestry. In the years immediately after 1964, the Islamic Workers’ Union was known to lead communist supporters into the forests of Java, shoot them, and then bury them in mass graves within the forest.

Following on from law changes in 1967, such protests generally begun to adopt a more clandestine approach. Because of the increasing militarisation of the forest service, notably with regards to its four different police forces, villagers were more fearful of reprisal if caught disobeying forest law. Stands comprised largely – or exclusively – of teak were most ferociously guarded. Granted, villagers did sometimes attack the armed police forces, and notably when the police forces were caught undertaking clandestine operations themselves, and also burned the state-owned forests of teak and pine (principally Pinus merkusii). At this time, the forest service also became more centralised, which further alienated a forest service from the villagers that, despite its now Indonesian-run state, reflected distinctly its Dutch ancestral roots, and diametrically opposed the traditional Javanese agrarian lifestyle. As a consequence of villager exclusion, the quality of the Javanese forests progressively declined over the decades because villagers had to resort to ‘theft’ to obtain what they could once gain on a subsistence basis (or to support black market demands for teak, in order to supplement the limited wages they would gain by working for the State Forestry Corporation on an ad hoc basis), which has contributed to sometimes quite severe environmental degradation. Such issues are still pertinent today.

Principal source

Peluso, N. (1992) Rich Forests, Poor People: Resource Control and Resistance in Java. USA: University of California Press.

Additional sources

Benda, H. & Castles, L. (1969) The Samin Movement. Bijdragen tot de Taal-, Land-en Volkenkunde. 125 (2). p207-240.

Boomgaard, P. (1992) Forest management and exploitation in colonial Java, 1677-1897. Forest & Conservation History. 36 (1). p4-14.

Colchester, M. (2006) Justice in the forest: rural livelihoods and forest law enforcement. Indonesia: CIFOR.

Galudra, G. & Sirait, M. (2009) A discourse on Dutch colonial forest policy and science in Indonesia at the beginning of the 20th century. International Forestry Review. 11 (4). p524-533.

Honna, J. (2010) The legacy of the New Order military in local politics: West, Central and East Java. In Aspinall, E. & Fealy, G. (eds.) Soeharto’s New Order and its Legacy. Australia: The Australian National University.

Korver, A. (1976) The Samin movement and millenarism. Bijdragen tot de Taal-, Land-en Volkenkunde. 132 (2-3). p249-266.

Lindayati, R. (2002) Ideas and institutions in social forestry policy. In COlfer, C. & Resosudarmo, I. (eds.) Which Way Forward?: People, Forests, and Policymaking in Indonesia. USA: Resources for the Future.

Lounela, A. (2012) Contesting State Forests in Post-Suharto Indonesia: Authority Formation, State Forest Land Dispute, and Power in Upland Central Java, Indonesia. Austrian Journal of South-East Asian Studies. 5 (2). p208-228.

Maring, P., (2015) Culture of control versus the culture of resistance in the case of control of forest. Makara Hubs-Asia. 19 (1). p27-38.

Peluso, N. (1991) The history of state forest management in colonial Java. Forest & Conservation History. 35 (2). p65-75.

Peluso, N. (1993) ‘Traditions’ of forest control in Java: Implications for social forestry and sustainability. Global Ecology and Biogeography Letters. 3 (4-6). p138-157.

Smiet, A. (1990) Forest ecology on Java: conversion and usage in a historical perspective. Journal of Tropical Forest Science. 2 (4). p286-302.

Vandergeest, P. & Peluso, N. (2006) Empires of forestry: Professional forestry and state power in Southeast Asia, Part 1. Environment and History. 12 (1). p31-64.

A history of state forestry in Java, Indonesia

A history of state forestry in France

See part II of this series on state forestry in Zimbabwe here.

Whilst slightly less economically-driven in the direct forestry sense, the development of state forestry practice in the mountainous regions of France – principally the Alps and Pyrenees – provides for another example into how state forestry has been met with civil unrest. Traditionally, the agrarian peasantry of the mountainous regions of southern France had maintained a close connection with the forest (comprised of species including silver fir Abies alba, beech Fagus sylvatica, oak Quercus robur / Quercus petraea, pine Pinus mugo, and spruce Picea abies), using it, for example, as pasture for local breeds of cattle and sheep, for medicinal purposes, or to provide for the necessary timber and firewood for sustaining a somewhat comfortable existence. Forest was also cleared for agricultural purposes, as was it harvested for charcoal to fuel the developing ironworks industry. Management typically adopted what is defined as jardinage, which entails the management of the forest as if it were a form of garden – felling was irregular, and there was no ‘scientific’ approach to forest management; simply because it didn’t need to be, as the forest was managed for subsistence purposes by the peasantry. Therefore, the forest – as well as the pasture lands surrounding – was understood as belonging to the peasantry, sometimes on a private basis but more often on a communal one, and its existence was critical for sustaining their way of life. Consequently, when the state began to encroach upon this assumed right of forest and land ownership, for a multitude of reasons, such an intent was met with marked vitriol.

Forest being cleared for charcoal production. Source: Z-Blogs.

Whilst the bulk of the protest occurred during the period of 1860-1940, it is important to recognise the political dynamics that led up to this tumultuous period of French history, and therefore one can begin observing how the state interfered in the management of forests (both lowland and upland, as one combined entity) as far back as 1215. From 1215 through to 1800, a series of Ordinances had governed the use of the forest across France. Different Ordinances meant different limitations were in place, though in principal royal and ecclesiastical forests had limited potential use by the peasantry. Largely-speaking, such Ordinances were geared towards the management of lowland forests of France, and not to the mountainous ones referenced here. Therefore, the Ordinances, and in particular the 1669 Ordinance, did not hold much clout in the mountainous regions of southern France, and were therefore intentionally ignored – or simply not enforced – by and upon the peasantry, respectively. Nonetheless, forestry did occur in France, and this prior period is detailed by Matteson (2015).

However, come the 18th and 19th century, as the state observed the forests of the mountainous regions slowly dissipate as a consequence of continued degradation by the peasantry, and the adverse environmental impacts of this (soil erosion of upland areas, large-scale flooding in critical lowland agricultural areas, and so on), it sought to alter its modus operandi with regards to the upland forests. However, military efforts and the improvement of infrastructure also demanded timber, which must be provided from national forests. Most importantly, because the state did not trust the peasantry to restore the mountainous areas to high forest cover, it pursued the acquisition of territory to undertake such reforestation itself. Such a process began in 1790 when the state initiated the accumulation of ecclesiastical land, though the Rural Code of 1791 (put in place following the French Revolution that ended earlier that year) prohibited the state from acquiring communally-owned land, which limited its capacity in developing large tracts of mountainous land for reforestation purposes. However, come 1801, the Administration des Forêts was established, with the main aim of supplying timber for shipyards – this birth of a new era in state forestry soon led to the establishment of the Forest Code in 1827, which adopted a much broader set of aims.

Artwork depicting the Pavillon de l’administration des forêts in Paris, 1878. Source: Wikimedia.

The Forest Code of 1827 was a particularly undesirable piece of legislation, in the view of the mountainous peasantry. The Code allowed the state to acquire communally-owned land with relative ease, and forbade pasturing in forests, the gathering of firewood, and the felling and extraction of particular trees. It also established the footings of future reforestation efforts. Crucially, the Code did not recognise the huge distinction between mountainous forests and lowland ones. In this sense, the traditional way of the mountain regions was directly in opposition to the Code. The situation was further exacerbated by the heavy policing that came with the introduction of the Forest Code. Forest guards, employed by the state, were instructed to arrest individuals for crimes that were once not even considered crimes (and by the peasantry still were not), and prosecutions for these crimes (however little – such as illegally grazing one cow outside of permitted zones) in court were met with fines and jail time. Therefore, by 1829, the electrical social and political standing was so severe that mountainous peasants began to revolt. One notable example of such revolt, which was certainly violent in many aspects, was the War of the Demoiselles (1829-1832) in the area including Massat, which saw male peasants dress up as women and ransack privately-owned and state-owned forests, and also attack the much-maligned forest guards and noblemen (see Sahlins, 1994). The famine of 1848 also saw many peasant revolts in these forests, for the limited usage of the forest was certainly a driver behind the extent of the famine of the mountainous peasants.

In 1851, when the state voted to relax the control of lowland forests to promote better agricultural practice, the mountainous forests took a further step towards state ownership and management. The state saw agriculture as highly important for France’s economy, and therefore considered the mountains to be of supreme importance in safeguarding lowland plains from the throes of flooding (as so pertinently demonstrated by the horrific floods of the 1840s). Subsequently, the mountain slopes had to be reforested, as their current state was far from sufficient in the aim of having such upland forests protect the lowland plains from harm. As ascertained, because the state was not trusting of the mountainous peasantry, it pursued reforestation through its own means; as well as mandating land owners to reforest their land that, if refused by the land owner, resulted in them forsaking at least half of their land to the state (who would then reforest it). Laws passed by the state in 1860 enabled for even more communally-owned upland land masses to be occupied by the state, which certainly aided in this reforestation effort; albeit to the huge detriment of the mountainous peasantry.

Moorland prior to afforestation with pine in the middle of the 19th century. Source: Abelard.

It was therefore this period, from 1860, when political tensions were reaching the proverbial boiling point between the state and the peasantry of the Alps and Pyrenees. After all, the attrition upon and erosion of their traditional customs had resulted in their way of life having to alter greatly if their agrarian existence was to remain tenable. Matters were made worse by the lack of inclusion of the peasantry in local decisions made on reforestation, and the exclusion of the very same peasantry from some – if not all – of the land upon which they made their living. In 1864, the state recognised the friction between the state and the peasantry, and made more lax the regulations of reforestation, allowing instead for some areas to remain as grassed pasture. 1870 also witnessed the close of the 1860 law, and the subsequent pursuit of new forest laws to protect the mountain slopes from erosion and flooding. Discussions began in 1873 to produce a new law, though it only were properly formalised as a new law in 1882, and was entitled Restoration and Conservation of Alpine Lands. Curiously, its title entirely omits the idea of reforestation, though the peasantry were just as wary of this new piece of legislation as the end goal of the state was no different to what it had been in 1860 – it was simply more inclusive of the needs of local peasants, and opted to pursue engineering solutions as well as natural solutions for the protection of mountain slopes. The law also restricted the state’s ability to acquire new land for reforestation, and mandated there be ample justification in purchasing communal or private land, and created a department known as the Restauration des terrains en montagne (or RTM). This department would largely be responsible for reforestation projects.

However, the constant change in leadership of the Administration des Forêts resulted in this approach (of being more accepting of the peasantry) lacking long-term commitment, as different forest managers approached the pursuit of reforestation and land acquisition in different manners; certainly, some approaches were far more militant, and the 1882 law didn’t always appear as being more lax than its 1860 predecessor. Therefore, whilst having ended in 1832, the War of the Demoiselles evolved into the Affair of the Mountains, for example. This new era of protest, which gained serious momentum after in the later periods of the 19th century, saw peasants adopt a progressively more political and legal approach to protest, culminating in the early 1900s with the local government being comprised of almost exclusively the peasantry. This approach was spearheaded in part, from 1870-1900, by Francois Piquemal, a peasant farmer who promoted rebellion against forest law and the innate right of the peasants to the lands they lived within and worked upon. In response to this political uprising and modernisation of peasant protest, the French state quelled quite extensively its pursuit of reforestation in the area, having realised that state forestry in a location so opposed to it – and with a peasantry willing to hamper quite zealously any efforts made to create forest cover – was an exercise in futility.

An entire mountain slope within the Alps void almost entirely of trees, in 1889. Source: Landscapes for People, Food and Nature.

Partly as a consequence of the association of the Administration des Forêts in the late 19th century with a lack of consideration for peasants, though also because the administration also became responsible for France’s waters in 1896, its organisational name was changed to Eaux et Forêts in 1898. Such a name change also reverted the administration’s name back to what it was prior to 1801, thereby reflecting a more traditional approach to state forestry and land management. Despite this homage to traditionality, the Eaux et Forêts (principally the RTM) pursued the acquisition of land (communally- or privately-owned) for the state en masse, and by 1900 a total of 163,000 hectares had been secured and another 172,000 hectares were highlighted for acquisition. This almost industrial rate of conversion to state-owned land had ramifications for the peasantry of the mountains, and by the project was falling short of its targets – in part, because of protests.

Regardless, the state continued with its aim of obtaining land for reforestation, and therefore in 1913 the Audiffred law was passed, and enabled the state to impose more controls upon privately-owned forest land. Scope even existed to allow the RTM to manage the forest on behalf of the land owner, with the interest of protecting lowland plains from the throes of flooding brought about from the mountains. In the same year, to supplement this new law, the state’s means of managing communal lands was enhanced. A revision potentially triggered initially by the unrest in the late 19th century, the new law developed into one of allowing the Eaux et Forêts to have much greater control over the management of land in upland areas. Whilst the 1882 law had not allowed the state to acquire land for the purpose of reforestation unless there was marked justification for doing so, this new law gave the state scope to acquire any land it desired.

A century of difference on mountain slopes within the Pyrenees. Source: Revuelto et al. (2016).

The onset of World War I, some months later in 1914, relayed the enactment of the 1913 laws, though also led to the laws being supported by a further wave of legislation and political standing pertaining to forest management, which would have repercussions for the rural Alpine and Pyrenean communities. The evident frenetic demand for timber for the war effort rapidly demanded additional resources beyond what the RTM could provide, and therefore in 1915 the Service forestier aux armées (SFA) was created the help with the felling and transport of timber to the front line. By 1917, the Comité général des bois also was born, for similar purposes. In late 1918, when the war has come to a close, a total of over 600,000 hectares of forest had been literally consumed in France, and it was estimated that there was a deficit of 1,636,000 cubic metres of timber each year. The decimated landscape, courtesy of persistent shelling and military action, also meant many standing forests were scarred, and areas to be reforested damaged significantly. Consequently, the Eaux et Forêts and RTM very rapidly earmarked massive areas for replanting, and the mountainous tracts of land did not escape this process.

Initially, the RTM entertained the idea of planting up coniferous forest stands within the Alps and Pyrenees, though the documented evidence and evidence gained after some initial planting projects soon lay waste to this pursuit – the conifers simply could not grow desirably, given an array of climatic and geological factors. Therefore, notably after the formalising of the Chauveau law in 1922, reforesting projects were undertaken under the banner of ‘protective forestry’. In short, the aim of reforestation reverted back to the initial aim from the century before, though with an added impetus: the lowland areas below the slopes were now becoming more heavily industrialised and infrastructure was better, and therefore protection was even more necessary as the costs associated with flooding would be even greater. Not only did the new law drastically limit the ability for agrarian peasants to undertake grazing, the felling of trees, and so on, but it also gave the RTM the power to very swiftly obtain land and reforest areas earmarked for planting. After consultations in 1925 over land masses to be planted, despite being near universally met with unease by rural councils and peasants, projects began as soon as 1926. This resulted in many peasants losing access to their land, and in turn a rural exodus began; such an exodus paved the way for what was to come.

Quite simply, following the exodus, those who remained became more reliant upon the Eaux et Forêts for employment and financial aid; such a reliance was accentuated by the economic plights of the 1930s. Furthermore, within the same decade, and also because of the exodus of rural peasants, the state passed laws recognising the importance of traditional customs in rural communities. Certainly a means of trying to safeguard rural economies and communities, laws in fact allowed – and even promoted – jardinage, which had historically been frowned upon by foresters. Peasants could also collect firewood from state forests, as could they gather fodder for animals, and timber from deformed branches (collectively known as sarclage). Ultimately, as long as the forests remained in tact and could fulfil their purpose for protecting the lands below, peasants had more freedom to practice their traditions. Even pastures were opened up for grazing by sheep and cattle, and some foresters also allowed pastoralists to graze their sheep or cattle within the forest itself by 1936. As a result, peasants began to warm to the idea of state forestry (and the role the forests themselves played in rural life), and the Eaux et Forêts began to warm to the peasantry – quite ironically, one could remark, given the centuries of almost unsolvable animosity between state and mountain peasant.

This decade also witnessed the decline in power of the Eaux et Forêts, however. By 1935, it had 25% fewer staff than it had in the preceding decades, and peasants were calling on the organisation to employ more foresters to enable communal forest management projects to be overseen properly. For the foresters that remained within the organisation, though also those that worked for private landowners, the situation was concerning. Therefore, many had begun to join organisations dedicated to promoting tourism within the French mountains (such as the Société des Amis des Arbres and Touring-Club), as these organisations championed the idea of reforestation upon the slopes of the mountains – notably on communal land abandoned following the outward migration of pastoralists. Since the last decade of the 19th century, such tourism had begun to gain popularity, and by the 1930s the Eaux et Forêts had formed partnerships with many of these organisations – partnerships that also provided funding, from the Eaux et Forêts to the tourist organisations, for the purpose of reforestation projects. The main aim of such reforestation, in the eyes of the tourist organisations, was that their clients (often well-off individuals) wanted to experience unadulterated nature, away from civilisation (notably the peasant under-class). Consequently, this is what the organisations would seek to provide.

Alongside tourism came industry, and in turn a changing demographic. Because the well-off tourists didn’t want to experience the ways of the traditional peasantry, and compiled with the fact that the peasantry could not provide the services demanded by the tourists, businessmen migrated into the mountains and the peasantry further migrated out. In spite of organisations such as the Société Française d’Économie Alpestre and the Fédération Pyrénéenne d’Economie Montagnarde promoting pastoralism during the 1920s and 1930s – a pursuit even funded by the Eaux et Forêts up until 1937 – the rural exodus did not wane, and the original aim of reforestation on the mountain slopes was fulfilled through the natural regeneration of forests on abandoned pasture. Traditional custom of the French mountain slopes thus became a practice of novelty, undertaken only by a few and relegated to the halls of memory for many.


Whited, T. (2000) Forest and Peasant Politics in Modern France. USA: Yale University Press.

Additional reading

Matteson, K. (2015) Forests in Revolutionary France: Conservation, Community, and Conflict, 1669-1848. UK: Cambridge University Press.

Sahlins, P. (1994) Forest Rites: The War of the Demoiselles in Nineteenth-Century France. USA: Harvard University Press.

A history of state forestry in France

A history of state forestry in Zimbabwe

See part I of this series on state forestry in Burma here.

Focussing predominantly on the western region of Zimbabwe that is known as Matabeleland, where teak forests (otherwise known as gusu) – that were comprised of species such as African teak (Baikiaea plurijuga), African blackwood (Dalbergia melanoxylon), African mahogany (Guibourtia coleosperma), wild teak (Pterocarpus angolensis), and mongongo (Schinziophyton rautanenii) – covered approximately 2,000,000 acres of land and were the home of 65,000 Africans before 1890, one can observe how the advent of colonial rule markedly altered the indigenous African’s relationship with the forest.

A map of Zimbabwe. Source: Off-2-Explore.

Prior to the era of British colonialism that began during the late 1880s to early 1890s (cemented by the coming-to-power of the British South Africa Company in 1890), indigenous Africans (including the Ndebele, Nyai, Shangwe, and Shora) had markedly close associations with their forests – notably the poor. Varying across different peoples, gusu was used for a variety of reasons, including for food (fruits and nuts, though also for sheltering game, grazing cattle, and enhancing soil fertility where shifting cultivation was routinely practiced), water, construction timber, firewood, medicine, and worship (through sacred groves, sanctuaries, and any shrines contained within). Such reliance upon the forest – which was communally-owned or privately-owned as a homestead, with vested interest from a king or chieftain – was not limited in any discernible manner, and communities were thus able to rely upon the forest to any potential degree.

With specific regards to shifting cultivation, this practice was a staple activity in many communities. Shifting cultivation would involve areas of gusu being cleared for agricultural purposes, for a period of only a few years, before the nutrient profile of the soil would deplete enough to demand land abandonment (alongside subsequent secondary woodland regeneration) and clearance elsewhere for the same reason. Oftentimes, forest areas adjacent to rivers were cleared on sporadic rotations, for such areas harboured enough soil nutrients to make such shifting cultivation feasible. In this sense, areas of gusu that were fertile supported indigenous Africans to a far greater extent that infertile areas of woodland away from sources of water.

Undoubtedly, this use – particularly as populations grew – though also the other demands upon the forest, led to some ‘core’ areas of fertile forest land becoming degraded, and thereby deforested. However, it must be noted that, on the whole, forest conservation was a mainstay of pre-colonial life for indigenous Africans. Ultimately, because they relied upon the forest – either partially or wholly – for their means of existence to be sustained, it was not in their interests to see the forest decline to a condition that would render its longevity infeasible. More broadly, a myriad of economic, ideological, and religious needs and views, dictated sustainable forest practices, and a pursuit of essential ‘harmony’ with nature was evident between man and the forest. Crucially, this highlighted that indigenous Africans had the ability to responsibly manage their forests, and with a logical rationale – a rationale that the colonial government would certainly come to completely ignore.

However, the rise of the BSAC in 1890, particularly after the victory of the British over the Ndebele in 1894 and then again in 1897, saw forest management practices change. Principally, the BSAC, who became the governing body of Zimbabwe, actively sought to segregate fertile land from indigenous Africans, for the economic benefit of white settlers who could then manage such fertile lands. In this sense, areas of gusu and fertile land were cut-off from the native communities, who were pushed into Reserves (including the Gwai Native Reserve and Shangani Native Reserve) of largely infertile land set-up by the BSAC to specifically house such communities. The state (or private organisation, including the BSAC, Rhodesia Railways, and Goldfields Company) would then assume ownership of forest land outside of such Reserves, as supported by the Private Land Ordinance of 1898. Such segregation also stood on the premise that the forests of Matabeleland were void of human activity prior to 1890, and that the native’s association with the forest was akin to Paganism – a religion much maligned by Christianity, which was the religion of Europe at the time. Unsurprisingly, some natives refused to leave their historical homes within the gusu, thereby rejecting the new imposition of Western state ideology on their manner ofexistence.

A photo of the British South Africa Company Police, who would have frequented the Matabeleland region following the emergence of the BSAC as state power. Source: Grunts & Co.

As natives were being excluded from their forests, the BSAC hurriedly began to assess the forests of Matabeleland for their commercial value. With the help of foresters from British-ruled South Africa, the BSAC initially identified four tree species that had the potential to be commercially profitable. However, the imperial wars of 1894 and 1897 hampered the ability of the foresters to determine the value of gusu, and therefore their reports fell foul to short-sightedness. However, from 1898, felling within these forests began, and up until 1908 the sole contractor responsible for legal felling operations was the Matabele Timber Trust. However, illegal felling was rife, and therefore, whilst legal felling was rather limited, when illegal felling was added into the equation the extent of deforestation became far more significant. During this period, much timber was used by the mining organisations within Matabeleland, who consumed timber at quite alarming rates to fuel their operations; much forest clearance was also undertaken for the purposes of agricultural expansion. At the beginning of 1909, the BSAC commissioned further reports into the economic state of the gusu. This time, reports came from the regional level, and were supplemented by a national report (The Sim Report) undertaken by Sim, a South African forester. This time, 24 species were recognised as possessing retail value, and this assessment subsequently became the crux of all future forestry developments in Matabeleland. The 1909 Private Location Ordinance also assisted with pushing natives into Reserves, such as the GNR, so that the state could harness the value of the gusu for its own ends.

This new perception of the gusu as being far more economically fruitful quickly led to the BSAC prohibiting shifting cultivation altogether, because of its observed destructive consequences with regards to forestry. Unfortunately, the state did not recognise the variety of ecological and cultural benefits of the practice, in making this decision, and it therefore was not surprising that the state also entertained prohibiting forest use by natives altogether. It was perhaps only a result of the protest, from the indigenous Africans and also some white settlers and state commissioners, that didn’t see such an extensive ban being enforced. Certain state commissioners and settlers even disagreed that shifting cultivation was a serious concern, remarking that mining operations were far more destructive, and some also attributed its prohibition to inciting unwanted unrest amongst the native communities. Additionally, this more preferable economic understanding of the gusu even led to native communities being driven out of areas of the Reserves they were pushed towards, which caused further tension between the state and indigenous Africans. In essence, natives were aghast at the glaring double-standards exercised by the state: the state had concerns over deforestation caused by shifting cultivation, to only then permit even greater deforestation for economic gain.

A logging train stocked with fresh timber in what was previously (and at the time of this photo being taken) known as Rhodesia. Source: Future WGworker.

The year after, in 1910, when state-permitted forestry operations began to gain serious momentum (of which much still went to the mining organisations), the Forest Branch was created within the Ministry of Agriculture. This new Forest Branch was tasked with the responsibility of dealing with forestry-related issues, and ensuring the gusu was managed with conservation in mind. Unfortunately, because the Forest Branch lacked any forest officer or other dedicated member of staff prior to 1920, and the fact that the state was eagerly pursuing short-term and quick-win strategies to forest management that involved massive amounts of felling, forest conservation was barely even practiced – if at all. During this ten year period, in 1917, the BSAC government also signed a deal with the Hepker brothers (Rhodesia Native Timber Concessionaires) that essentially monopolised the gusu. Initially an eight year agreement that would end in 1925, it was extended to 1935 two years into the contract, albeit with two other companies also gaining access to state forests. These organisations, particularly the RNTC, swiftly began recklessly felling high quality trees en masse. For example, stumps were left at 3-4ft in height, and as much as 50% of felled timber was left where it was cut.

Subsequently, when Henkel became the first part-time forest officer of the Forest Branch in 1920, he likened the situation to that of mining, and was quoted as exclaiming that the “forests [were] simply being mined”. Notably, Baikiaea plurijuga and Guibourtia coleosperma were “doomed to extinction”. However, with the Forest Branch only possessing Henkel and five other members of part-time staff, it was still unable to fulfil what it was tasked with fulfilling, and thus it was perhaps not unexpected that the BSAC government declined to increase its staffing levels after appeals in 1921 – it simply was not ‘in favour’. However, it did start to mark up protected forest areas, and by 1923 some 774,422 acres of forest in Matabeleland were classed as forest reserve. Many species of tree also became scheduled, and thereby were protected wherever they stood. These areas did not permit native access or utilisation whatsoever, thereby prohibiting any and all acts that were once seen as entirely acceptable. Ironically, such areas could still be felled for mining organisations, where there was a pressing need for accessible timber.

When the BSAC government ceased to hold power following national elections during 1923, and the Responsible Government took over rule of Zimbabwe, it assumed control of the state’s forests. In 1925, the Lands Commission advised the government on forest matters, and 90% of all gusu was marked as a forest reserve by 1930. Even the Reserves set up for the indigenous Africans suffered further erosion by the state, with up to 70% of their total extent being lost during this period. A tax of 10 shillings on all natives within the Reserves was also established in 1931, and all adult males also had to pay a 50 shilling tax, per month. As a consequence, natives were further excluded from their surrounding and already limited forests, and this led to many communities suffering from outward migration, as the quality of life dropped for many. Some forest tenants, as they were now known, were also evicted from the shrinking Reserves, for not paying their tax – some refused to leave, in protest. These migrants and evicted tenants would then pursue work elsewhere, even if it was for the RNTC or other forestry-associated organisation. However, such organisations favoured workers from other areas of Africa, as they were less prone to leaving to see family either temporarily or permanently. Therefore, only 20% of the total workforce was native to Matabeleland. Also in 1925, the RNTC signed a revised agreement to harvest the gusu with a near monopoly once again, which was granted. Protest by indigenous Africans meant that, in 1926, the RNTC was mandated by the state to gain permission from the native communities within the Reserves if they were to log within gusu found within those areas. Soon after, in 1927, after the RNTC ignored this rule, and through lobbying pressure, the state overturned such a requirement.; even in spite of protest internally, by the Forest Branch. Throughout, natives also ignored the state’s laws, and continued to use the forest as they historically had done, though for entirely different reasons to the RNTC.

It was only in 1934 when the Forest Branch was granted its first full-time officer, in John Wilkins. Subsequent to this, it was far more able to effectively promote forest conservation, thereby challenging the RNTC’s monopoly over the gusu, as well as helping restrict African access to the gusu. Such an appointment could not have come any later, in fact, for much of the gusu was so damaged by unrestrained logging that the volume of timber had fallen by as much as 80% within stands, and mature Baikiaea plurijuga had nigh disappeared altogether – even within the Reserves created for the indigenous Africans. Therefore, after Wilkins submitted his report to the government, the RNTC’s push to gain even more control over the gusu was rejected, and more strict measures on the felling of trees were enforced, with no trees below 12in in DBH being allowed to be felled legally, in addition to no felling of trees above this size leaving stumps higher than 15in. Within the Reserves, any trees felled were also to be taxed as they stood prior to felling, and any such proceeds would go towards improving the quality of life for natives living within the Reserves (notably the GNR and SNR), under the scheme known as the Native Reserve Trust.

Around this time, the Forest Branch also relied upon the help of indigenous Africans to help police the forests as forest rangers (otherwise dubbed Special Native Constables), though as the staff of the Forest Branch were seen as the flagbearers of state control against traditional relations with the gusu, natives were wary of assisting at all, and at times even committed acts of arson on state forest land in protest against such intervention measures. The poor wages, if the natives were even paid, probably contributed to this stance, also. Despite this, natives were also on hand to fight these fires, and protect forest from harm more generally – when they were willing to do so, of course. When such forest rangers did find individuals breaching forest regulations that included acts of arson, and who were usually natives (but not at all exclusively – white settlers also breached forest rules), then these natives would be prosecuted in response. However, a successful prosecution was not a given, and in one year alone 600 of the 804 natives pursued for forest offences were found innocent, in retrospect. Without doubt, this barrage of arrests and pursuits of prosecution led to a rather tumultuous relationship between the indigenous communities and the state.

A forest alight in Zimbabwe. Source: Rhodesian Heritage.

Inside the Reserves, the Forest Branch also began to create Native Forest Areas, during the 1930s and early 1940s. The GNR took centre stage in this regard, as the Forest Branch saw it as highly viable in the commercial sense, and its longevity to provide hardwood timber was critical for the state. Within the Reserves, land was segmented into fragments denoted as residential, farming, grazing, or forest land, and thus the use of the land within Reserves such as the GNR became markedly differentiated. However, as much of the forest land came at the expense of farming land, communities within the Reserves were left with progressively declining areas of land in which they could farm; all whilst supporting greater levels of population – which too was a problem, and this resulted in the Forest Branch evicting some people from the Reserves, in an attempt to keep population levels down.

Individuals were also barred from cutting native trees without a license granted by the Forest Branch, as were they mandated to aid in reforestation efforts of both native tree species and exotic ones. A quota system was also introduced, thereby limiting the amount of timber that could legally be extracted during a given period of time, and this affected natives, logging and milling companies, and any private land owner who wished to fell his or her trees. In many instances, native individuals thus resorted to illegally obtaining timber, at the risk of being imprisoned. For the large companies undertaking forestry operations, the Forest Branch also began attempting to rigorously monitor all operations, in addition to limiting the extent of forestry operations; as did the Forest Branch seek to limit cattle grazing by natives in Reserves, as such grazing endangered regeneration. In response to this measure, some natives chose not to comply, though in fact many were responsive to the demands, in spite of their increased precarious situation having lost potentially many heads of cattle.

Despite such progress towards the forest conservation ideal, on behalf of the Forest Branch, the Second World War acted as a significant dampener to these goals, and in many an aspect reversed all advancement towards this end. Simply put, output from forestry returned to the wildly unsustainable and un-regulatable levels that existed before the mid 1920s, in order to fund the war machine. The RNTC was a major player in this scenario – of course, there were many other organisations that also helped to create the revival of intense forestry (legally or illegally); as did indigenous Africans grasp at the opportunity, and partake in illegal felling. However, as the Second World War came to a close and logging levels remained high, the indigenous (and settler) outlook towards the forest changed somewhat. Instead of being averse to forest conservation, there was an increasing demand for its conservation – perhaps, because of the sobering situation the forests of Matabeleland were in, during this period. This led, therefore, to the first piece of governmental legislation relating exclusively to holistic forest management, and was entitled the Forest Act (1949). Within the Act, sections included forest demarcation, controls to timber rights, the practice of forest conservation, protection of forests from fires, and penalties for committing forestry offences. Evidently, the forests of Matabeleland, and those who used the forests, were now subject to a much more formalised level of scrutiny, and potentially subject to the greater wrath of the state.

Consequently, during the last few years of the 1940s and into the 1950s, the Forest Branch became more militant in its pursuance of protecting the gusu from fires by making them void of forest dwellers, who were considered a major risk against forest conservation. Even those who lived in the forests legally were becoming marginalised by the state, as the Forest Branch proceeded with its end game of total fire protection – much to the distaste of those living within the forest, who saw their value as being lesser than that of a tree. The situation was compounded by the strong lack of desire, on behalf of the Forest Branch, to allow for schools, trading stores, and other buildings to be built within the forests, because such community hubs might increase the risk of fire – even though there was a very evident native demand for such services, and notably schools. Similarly, road networks were few and far between, and the use of such roads was limited to those that were given permission to use them, by the Forest Branch; where buses could transport natives through the forest, rarely were bus stops found within the forest itself, for similar safeguarding reasons. However, because such residents of the forests of Matabeleland were generally the source of cheap forest labour, their presence was considered both positive and negative for the longevity of the gusu. This was a particularly pertinent point of consideration, given foreign labourers were distinctly lacking after the war, for reasons including that their native countries were retaining them for their own purposes.

Throughout the 1950s and 1960s, the Forest Branch, which became the Forestry Commission in 1954, after the Forest Amendment Act of 1953 came into force, further continued in its quest for absolute forest conservation and protection. Not only did the RNTC lose its essentially absolute control over the gusu of Matabeleland, with a further six logging contractors being introduced in a bid to help conserve forests and promote more responsible logging complete with reduced wastage, but it continued to evict native Africans from the gusu. The reason behind such eviction was, in part, due to growing population levels placing strain upon the gusu, as natives frequently obtained timber and other forest products illegally, though also to protect the forests from fire. Consequently, illegal settlements continued to remain rife, and ‘freedom farming’ (known locally as ‘madiro’), which involved clearing gusu along fertile river banks for cultivation, was practiced as an act of defiance against the state.

Other forest crimes that occurred during the 1950s were the ever-population acts of arson, trespass, illegal felling, the construction of trading stores, and the over-grazing of land with cattle. Such defiant acts were perhaps more abundant and – in the eyes of the state – ideologically venomous, due to the rising nationalistic outlook of Africans in Matabeleland. The Forestry Commission’s iron rule over the gusu, to the detriment of the natives, was a perfect embodiment of the natives’ struggle against colonial power, and therefore they ensured that they did their best to undermine its authority as an organisation.

Unsurprisingly, come 1960, the progressive alienation of natives from the gusu became a principal factor in why guerillas battled the state within the forests of Matabeleland. As political instability became ever more tumultuous, tensions further ignited and civil war broke out in 1966. The onset of the civil war meant that the Forestry Commission could not effectively enact its forest policy, which led to the gusu being utilised more liberally by natives. In essence, there was a temporary return to the times prior to forest regulations; albeit amongst a fiery climate where different organisations were wrestling for political power. However, after fourteen years, in 1980, when the British decided to grant Zimbabwe independence, the now native government did little to change forest policy. In fact, it very much continued in the footsteps of the British, and arguably even more eagerly pursued economic gain, in order to fund governmental projects. Therefore, in spite of achieving macrocosmic independence, at the more minute level indigenous Africans were still no more free than they were before independence – forests were still heavily regulated, and natives were excluded from the gusu.

Today, hundreds of thousands of hectares of forest across Zimbabwe are cleared for tobacco production. Source: Mail & Guardian.

Principal source

Kwashirai, V. (2009) Green Colonialism in Zimbabwe: 1890-1980. USA: Cambria Press.

Additional sources

Kwashirai, V. (2006) Dilemmas in Conservationism in Colonial Zimbabwe, 1890-1930. Conservation and Society. 4 (4). p541-561.

Kwashirai, V. (2008) Poverty in the Gwai Forest Reserve, Zimbabwe: 1880-1953. Global Environment. 1 (1). p146-175.

Musemwa, M. (2009) Contestation over Resources: the farmer-miner dispute in colonial Zimbabwe, 1903-1939. Environment and History. 15 (1). p79-107.

A history of state forestry in Zimbabwe

A history of state forestry in Burma

The politically-fuelled backlash against commercial forestry efforts by governments (often initiated in the past by Western colonial governments) is an interesting aspect of how trees can wander into the realm of politics. Traditionally, forests have been at the centre of many human civilisations over the millennia, enabling forward progression through the sustainable utilisation of forest resources (for construction, fire, husbandry, and so on) under the jurisdiction of the local community (or communities). In this sense, there is a marked link between traditional man and the forest. Subsequently, the intervention of governments in order to commercialise forest management practices so to increase state revenue – originating in Germany, when the University of Freiburg was the first university to offer a formalised education on forestry practice in 1787 – has routinely been met with backlash in many regions of the world, as this usurpatious shift in forest management directly challenges cultural identity. Over the next few blog posts, a few rather lengthy case studies (written over the past six months) will outline how state forestry has brilliantly collided with historic custom and agrarian lifestyles. I truly hope you enjoy them, and if you want a list of all state forestry books I know of (I have a good dozen, from memory) please just ask!

State forestry in Burma (Myanmar)

Prior to Burma becoming a British colony in 1824, the Burmese monarchy had – in spite of the portrayal by the British – a sound forest management regime in place. Principally, because of Burma’s desirable forests of teak (Tectona grandis), which is a timber that is well-suited for the construction of naval vessels, and also buildings, there had been both internal and external demand for such timber for centuries. As a consequence, there was much potential profit involved for the monarchy, and therefore the harvesting and transportation of felled teak was carefully regulated – particularly when such harvesting was for-profit purposes; for the rural forest peasant, regulations were not necessarily as applicable, because of the subsistence use of the timber and the isolation of rural settlements from the (literally) centralised governance of the monarchy. Additionally, in the uncommon instances where the monarchy did seek to enforce forest regulations upon the peasants, such enforcement was met with backlash. Therefore, before the entrance of the British, rural Burmese peasants suffered little intervention from any form of large governing body, and the teak forests were managed with – at least to a degree – their long-term conservation in mind.

Upon the arrival of British rule however, such state-peasant dynamics altered – albeit, not too drastically to begin with. When the British gained control of the region of Tenasserim in 1824, because of the large scale deforestation of Great Britain, the fact that teak was a better timber for naval uses than oak (Quercus robur), the waning importation of oak timber from the Balkans, and the concept of deforestation being synonymous with industrial progression, the British undertook – and also permitted – large-scale deforestation of Tenasserim’s teak forests. Dubbed laissez-faire forestry, felling operations were not at all rational and were in fact quite frenetic, and therefore by 1856 Tenasserim’s teak forests had been irreparably damaged; notably by private organisations who regularly escaped the ineffective enforcement of the basic forest regulations put in place by the British. Such a laissez-faire approach had little impact upon the native peasantry, as they were free to undertake their practices as they did under the rule of the monarchy. In fact, many peasants benefited from this approach economically, as locals were employed to harvest timber, transport it, and also enforce basic forest rules.

A British force arrives in Burma on 28th November 1885, following the third Anglo-Burmese War. Source: Wikimedia Commons.

However, in 1852, having learned from the grave mistake that now plagued the teak forests of Tenasserim, when the British secured the southern province of Pegu, they swiftly moved to enforce much stricter rules upon the management of forests. Spearheaded by Lord Dalhouise, in 1853 all teak forests were declared the property of the state, and extraction of teak was forbidden without explicit permission. Soon after, in 1855, Dalhouise wrote the document entitled Minute of Forest Policy of 1855, and appointed Dietrich Brandis as Forest Superintendent, who formed The Burma Forest Department one year later in 1856. At its core, this new organisation would oversee man’s interaction with Burma’s forests (a panoptic pursuit), and employ the more rational and scientific approach to forestry that had been developed in Germany and France some decades before, with the purpose of significant economic gain from harvesting teak and other tree species. Also at the core of this alteration in direction was the observed wastefulness of the peasantry, in the eyes of the British. Evidently, according to the British, Burmese peasants could not be responsible for managing their forests, as they openly used it inefficiently, or destroyed it unnecessarily.

Whilst the new Forest Department lacked much authority in the years immediately following its inception, by the mid 1860s it grew in potency and by 1885 had tripled in size from its size of 1861. During this development period, the department began to significantly erode the traditional rights of the Burmese peasantry, and from multiple angles. With regards to the practice of shifting cultivation, which saw a peasant farmer routinely clearing new patches of teak forest for cultivation and using the burned remains of the teak as fertiliser, because of its direct impact upon the efficacy of teak harvesting by the state, and its alleged antithetical positioning compared to scientific forestry, the practice was essentially outlawed from 1856 – it was seen as not being an intrinsic right, with only settled agricultural practices being a right as defined by the state.

Subsequently, peasants undertaking such a form of cultivation protested in two ways: through avoidance and resistance. For example, peasants would flee Pegu permanently, or only temporarily after clearing an area for cultivation and crossing the border to Siam when forest officials were in the area, as would they clear teak and entirely destroy evidence of teak ever being there. More boldly, they may simply plead ignorance to forest regulations, if questioned. Such a state of affairs led to, in 1869, the state adopting what was known as taungya forestry, which allowed peasants to clear land for cultivation and, upon such clearance, cultivate their crops within an area of teak that had been planted at the same time. Then, after a period of some years, as the teak regenerated, the cultivators would move on to another forest patch and undertake the same operations.

Modern-day shifting cultivation in Burma, showing how segments of forest have been cleared for agriculture. Source: Burmalink.

The peasants who did not practice shifting cultivation were also impacted by such state regulations in Pegu. Whilst such regulations did not initially impact the general populace, both because only teak extraction was regulated and the Forest Department lacked man power and expertise, by 1875 the state’s classification of other tree species (a total of 14 other species, including Dipterocarpus tuberculatus, Lagerstroemia speciosa, Pterocarpus macrocarpus, Senegalia catechu, and Xylia xylocarpa) as protected from unlicensed felling led to unrest amongst the peasantry.

In essence, not only did this now marked limitation on timber harvesting conflict with the traditional Buddhist way of life, which saw timber used for construction felled only under specific auspicious circumstances, but it also limited their ability to use the forest both as a source of income and for subsistence purposes. Granted, the state did permit peasants to use the forest for reasons to do with subsistence, but such an exclusion from the forests of Pegu at large resulted, unsurprisingly, in backlash. Forms of such backlash from the peasants included illicitly felling trees for their timber, harvesting trees and selling them on the black market to native timber traders, resorting to felling only those trees not protected by the state (which took place to quite significant levels, in some instances), and destroying the property of the Forest Department.

As the Forest Department grew, it also adopted an ever-increasing scientific approach to forestry; this translated over into those employed by the department. Originally, the aim had been for the department to employ local people, though the lack of expertise and associated shortcomings in forest enforcement led quickly to attention being diverted to Europe – notably Germany and France, where forestry was being taught quite rigorously. Therefore, as the department grew in size from 1861 to 1885, whilst local foresters were still locals employed by the state, the higher paid forest conservators and other officials were not native Burmese individuals, which led to unrest even within the Forest Department. In essence, the Burmese foresters were unhappy at the evident glass ceiling within the organisation, and this resulted in the foresters defrauding the Forest Department and falsifying reports.

Come 1881, the state had passed the Burma Forest Act. This new piece of legislation enabled the colonial government to more readily establish ownership of forest lands, and to denote forest reserves where it was deemed pertinent to do so – in essence, the Act allowed for a more extensive and effective state consolidation of Burma’s forests. In Pegu, this led to most of teak forest being classified as a reserve, by 1990. Further north in Upper Burma, which came under British rule following the 1884-86 Anglo-Burmese War, reserves were similarly established (in a bid to standardise forestry practice in Burma), and come 1900 a total of 51% of teak forest area was classed as reserve. Other species of tree, such as Senegalia catechu, which was harvested for its water exudes used for tanning and dyeing, were also protected through the designation of forest reserves.

Unquestionably, because these reserves prohibited traditional practice, such as grazing, shifting cultivation, burning, and the harvesting of timber and collection of firewood, this pursuit of forest brought with it civil unrest amongst the peasantry reliant upon the forest. By-and-large, both the intentional burning of reserves, and then subsequent refusal to co-operate with the extinguishing efforts, were the methods of protest adopted. Furthermore, because Upper Burma had already experienced forest management prior to British rule, the contractors and rulers undertaking forestry operations at the time of a change in the ruling elite – namely the powerful Bombay Burmah Trading Corporation Limited (BBTLC) – were uneasy at the desire for the British to remove their rights to harvest timber (notably teak), and therefore after much pressure it was decided that, at least for the BBTLC, private operations could continue under state supervision. Rulers, including the Sawbwas of the Shah region, were marginalised, and thus lost access to their extensive forests.

Cleared compartments like this would have become far less frequent across Burmese forests. Source: East by Southeast.

As the 19th century approached its close, the Forest Department had gained power over much of Burma’s forests – almost all forests had been inventoried. Therefore, when the Burma Forest Act of 1902 was passed, it came as little surprise that the state had begun to further pursue control over forests. Based heavily on the principles of scientific forestry being applied only in exiting forest reserves, allowing those non-reserved area to be maintain by the peasantry at their own discretion, the Forest Department opted to principally use five different European contractors – including BBTLC, though no longer with a monopoly – for forestry operations, on fifteen-year leases. In this sense, the Forest Department would oversee a return to privatisation of forestry, much how it had been prior to 1856.

Unfortunately, by 1909, native contractors accounted for only 23% of the total output from state forestry operations, because of the more favourable stance the European contractors were seen in when it came to issuing leases for forestry operations (mainly because they were larger companies, meaning the Forest Department didn’t need to oversee so many contractors), which led to much animosity between Burmese contractors and the state – this was further exacerbated by 1924, when native contractors were responsible for only 5% of output. Compiled with the almost entire outlawing on shifting cultivation by the 1920s, because of its perceived associations with soil erosion, flooding, and a poor teak crop, and the designation of lowland forests as reserves because of their declining extent within the plains of Burma (agricultural production had increased so markedly – from 800,000 acres in 1982 to 6,000,000 acres in 1906), the situation during the this period led to much protest – namely the illegal extraction of timber, and illegal grazing of cattle. In some cases, 90% of all recorded crime came from the lowlands, where the demands on what little forest remained conflicted with the state’s classification of these forests as protected reserves.

The plight of those in the plains was also picked up by nationalist political movement, such as the General Council of Sangha Sammeggi, who supported local nationalist organisations known as wunthanu athin. These local movements aired the grievances of the plains peasantry, with regards to their inaccessible forest reserves, and their affiliations with national movements gave local voices a national audience. In turn, by the 1920s, nationalist politicians and the middle class were in support of the peasantry in the plains.

In response to this demand for forests to provide the peasantry with what they require, the state came to recognise that commercial forestry operations in reserves could not constitute the exclusive use of the reserved forests of Burma – notably in the lowlands. Therefore, in 1923, after the British colonial government provided the Burmese with partial rule of their country during 1921 and the Whyte Committee subsequently assessed the situation with Burmese forests at length, the Forest Department was handed over to the Burmese, and by 1930 the post of Forest Secretary was filled by a native individual. Thus began the process of ‘Burmanisation’ within the Forestry Department.

However, the actual amount of influence the Burmese had on the Department was slim, at this time – decisions relating to leases to forestry contractors were made in London, and only British officials had the power of appointing new people to the Department. As a consequence, unrest persisted, and forest crimes peaked during the mid 1930s. Come 1937, at the enacting of the Government of Burma Act of 1935, the power of the Burmese to regulate the use of their own forests was accentuated however, though this did not curb protest completely and in 1940 the Forest Department even began a propaganda campaign detailing the benefits of forest conservation through reserves.

A few years later in 1942, such power granted in the 1935 Act was further augmented after the Japanese acquired Burma during World War II and aided with integrating Burmese individuals into the Forest Department under the absence of the British. Having granted them ‘independence’ soon after, upon the return of the British after the end of the war 1945, the state was unable to implement scientific forestry again because of the huge amount of ‘lawlessness’ (relating to what was deemed a forest crime under British rule) in the forests. Notably, many forest reserves in the planes were cleared to make way for agriculture, during this three year period, though more broadly enforcing forest law effectively was simply not feasible; in part, because the Japanese simply ‘looted’ the forests of their timber to fund the war effort – an act which the peasantry mirrored all too zealously, in some scenarios. Curiously, even the Burmese who worked in the Forest Department during this time tried to enforce forest laws, and even sought to ensure that forests were managed as they were prior to the war’s impact on Burma.

The Burmese forests being used as a battleground during World War II. Source: Ibiblio.

After 1948 independence, which marked the conclusion of the period of Burmanisation, forest protests continued; albeit under a different political catalyst. Initially, until 1953, because of significant civil unrest across Burma, the Forestry Department had no forests to maintain – all were in the hands of insurgent groups, and only under armed guard could forest officials practice even the most basic of forestry tasks. Therefore, during this period the Department sought to instead simply plan its approach of once again employing scientific forestry as the core means of forest management following the calming of unrest, after the now entirely Burmese Forestry Department determined the scientific approach introduced by the British was in fact highly beneficial for the state. Soon after in 1954, having witnessed the persistent deforestation of Burma’s forests during this period of unrest (and before), the government sought to – with help from the Forestry Department – reforest 200,000 acres of forest in the more politically stable plains of Pegu.

During the following years, plantations were therefore created with help from willing locals; of which 4,000 were full-time employees and 20,000 part-time employees. In this sense, state forestry provided many local peasants with employment, during a time of political tumult, though such employment was often both mandatory and unpaid. Furthermore, shifting cultivation was once again outlawed in Pegu, with fixed agricultural practices being promoted in its place. In remote hilly areas this enforcement was not successful however, as insurgents resisted the will of the Forestry Department. It wasn’t until 1975, when the Burmese army cleared these hills of insurgents, that the hill forests were regained by the Forest Department, and scientific forestry could once again be practiced and shifting cultivation more effectively prohibited.

Evidently, the hills of Burma were of a different political climate entirely. Owned by insurgent groups, these areas were largely off-limits to the Forest Department, and only at the hands of the army cold they be regained. Because forests were highly valuable assets, notably in terms of their consistent provision of revenue, they were fiercely protected by insurgent groups, and in some respects these groups acted akin to the Forest Department – peasants were taxed for using the forest, and timber was sold to sustain the existence of these groups. For instance, the Karen National Union of Kawthoolei used the forests within the region as their main source of income from the 1960s, and the Kawthoolei Forestry Department created by the Union rivalled the state’s Forest Department, who themselves expanded within the region from a mere handful of staff in the 1950s to 463 during the early 1990s. The battle in this case was for territory, and the territory was the forest.

Following the violent military coup of 1988, spearheaded by the State Law and Order Restoration Council (SLORC), which overthrew the socialist government of the time, the forestry agenda again altered. The desire for short-term profit, because of Burma’s dire financial situation (which had largely persisted from 1948), meant that large-scale forestry operations were politically necessary for SLORC, who swiftly agreed a deal with neighbouring Thailand to log the Thai-Burmese border forests. For Thailand, this deal was also of marked benefit, because in 1988 the state banned all logging within the country after its forests had suffered massive losses at the hands of loggers over the preceding decades. The contractors for such logging activities were all Thai in origin, and therefore Burmese contractors lost out on any potential income from this venture. However, come the close of 1993, because of the sheer extent of illegal activities committed by the Thai loggers, the agreement was suspended and logging halted. Curiously, where Burmese loggers had been given contracts by SLORC and the Forest Department elsewhere in Burma around the same time, illegal logging was also an issue and this led to such agreements also being terminated by 1994. Compiled with the continued encroachment upon Burma’s forests by the peasantry who still sought to ignore forest law, Burma’s forests were still under threat.

At this time, the SLORC government also passed the Forest Law of 1992, which supported the incorporation of social issues into forest management, in addition to broader conversation aims – this new Law was supplemented with the National Forest Policy written by the Forest Department in 1994, which echoed the sentiments of the 1992 Law. However, forest conservation was still the prevailing issue, as was the need for the forest to provide revenue for the state, the Law thus allowed the state to begin doubling the number of forest reserves in the more remote regions of Burma, which had recently been relinquished of insurgent groups and their rule. This aim was supported through the state at the time signing Burma up to various organisations promoting forest conservation, including the International Tropical Timber Organisation. Subsequently, taungya forestry, and shifting cultivation in general, was once again to be outlawed, because it directly conflicted with the aims of rational and scientific forestry, thereby igniting peasant-state tensions for another time. Similarly, the use of forests beyond cultivation was to also be controlled, signalling to any outsider that state forestry and peasant use of the forest are at two ends of a political spectrum associated with resource access and control.

More recent years have in fact seen further bans of forestry within Burma, and to this date the state has banned logging in some areas for the benefit of the forests. In addition, the Burmese Army has set fire to plantations owned by small communities after the communities failed to provide forced labour. This details how the forest is still critical, to this day, and that an attack on the forest is an attack on the community.

This scene might not be so common in some areas of Burma, in 2016/17! Source: Environmental Investigation Agency.

Source: Bryant, R. (1997) The Political Ecology of Forestry in Burma. UK: Hurst & Company.

A history of state forestry in Burma