Fungal succession and wood decay in living trees – a seminar report (Part II)

See Part I here.

The second part of this cluster of blog posts is one the first of the duo of talks presented by Lynne Boddy. Lynne is a well-known mycologist and researcher and thus, as regards wood-decay fungi, is a good authority from which we can all learn a substantial amount. For a fungi enthusiast such as myself, learning about fungi from one of the best is, in and of itself, very exciting. However, the information presented was equally as exciting, which I shall run through below.

As a slight aside, please watch out for her new book, which is currently being written and should be finished later this year, currently entitled Fungi in Trees. This book will be aimed at the arboriculturist. Lynne is also planning to re-write Fungal Decomposition of Wood, which was a magnum opus co-authored with Alan Rayner.

Fungi invading trees

Primarily, we must accept one core tenet of wood decay: the anatomy of wood has a massive impact upon mycelial networks that sojourn through the wood substrate and selectively metabolise woody cells and their deposits as they go. Indeed, in an ideal world, fungi would gun right for the ray parenchyma, which are incredibly nutritious living cells. However, these cells are very challenging to get to, by virtue of their ‘aliveness’ – living cells in good condition are not easily devoured. Further to this, the sapwood also offers a great for invading fungi, though again – because of the high moisture condition meaning the environment is largely anaerobic (fungi are aerobes and require oxygen to metabolise) – this part of the wood structure is not easily accessed. Of course, the vascular wilts have a better time invading sapwood that is functional, though many fungi will have to bide their time or arrive opportunistically onto and into dysfunctional sapwood if they are to have any means of success in acquiring the treasures within. Thus, is recognising that such living (i.e. conductive and functional) areas of wood are likely just beyond the reach of many fungi, wood-decayers will typically resort to the back-up food source: non-functional xylem vessels within the heartwood or ripewood.

The heart rotters

Now, in accepting this, we come on to perhaps the broadest cohort of wood-decay fungi in living and standing trees (fallen trees have their dysfunctional sapwood metabolised like ravens engulfing a fresh meal) we know of: the heart rotters. These fungi will enter the central wood (i.e. ‘the heart’) through exposed areas of this central column by either sufficiently deep root, stem or branch injury – ultimately, there generally needs to be a continuity of viable ‘heart’ substrate, if any significant degree of colonisation is to take place. Where continuity doesn’t exist, or the fungus finds itself limited to only a certain area, the only manner in which is will typically be able to continue existing is by (1) exiting and finding another host or (2) biding its time and waiting for currently functional sapwood to become incorporated into the heartwood or ripewood, in which it can then spread into – assuming the tree doesn’t lay down defensive barriers that cannot be breached, in order to protect its sapwood, which is in itself a pursuit undertaken to safeguard and hence sustain the high-moisture content of its sapwood (contrary to Shigo’s model, which infers compartmentalisation is largely there with the end in mind of prohibiting fungal succession into the wood). When we look at the ripewood of beech (Fagus sylvatica), we can observe this phenomenon very well – a rosy-coloured ripewood (red heart) with lots of separation lines between instances of decay successions. Ganoderma australe, Ganoderma pfeifferi and Ganoderma resinaceum will afford the most acutely observable examples of this, given their ability to breach such zones by metabolising the phenolic deposits laid down by the tree (this touches upon the idea of a fifth wall in the CODIT model, which will be discussed more later on).

laetiporus-taxus-baccata-yew-3
An old Laetiporus sp. on yew (Taxus baccata).

By virtue of the heartwood or ripewood being the least inhospitable (heartwood, in particular, is still often disgustingly harsh, as regards its environment), we can observe immediately some species-specific associations. For instance, the dyer’s mazegill (Phaeolus schweinitzii) will frequent gymnospermous hosts, such as the cedars (Cedrus spp.) and pines (Pinus spp.), whilst chicken of the woods (Laetiporus spp. – often L. sulphureus, though by all means not always, as we will see) will be found often on oak (Quercus spp.), sweet chestnut (Castanea sativa) and yew (Taxus baccata) – it can, indeed, be found on other hosts, as well. On the face value of things, these three tree species have seemingly little in common, though all three have extractive-rich heartwood that this genus can metabolise effectively. In terms of why the genus is referred to and not the exact species, Lynne is of the stance that what we term ‘chicken of the woods’ and default to as L. sulphureus is actually a variety of different species each with their own specialisations – perhaps even down to a specific host tree species (notably for yew, where the chicken species is most pertinently viewed as being a different one).

From a tree management perspective, Lynne then addressed the importance of the heart rotters – what is their impact? Put simply, they change the way in which we view the tree from a safety perspective; as in, when fruiting bodies of heart rotters are identified, if the tree is standing and there exists a target, management considerations are routinely entertained and sometimes the tree is felled. Additionally to this, however, we have other things to appreciate:

  • heart rotters do a great job at recycling nutrients, which can then be re-assimilated by the tree when they are uptaken back through its roots (including adventitious aerial roots) or the mycorrhizal fungi the roots associate with
  • the wood qualities produced by heart rotters are ideal as habitat for saproxylic insects and nesting birds
phlebia-tremellosa-fagus-sylvatica-pollard-2
The heart of this beech has been hollowed-out by decay fungi. In the process, before its failure, what conditions did this decay provide for insects and, crucially, what habitat does it provide now?

Latent colonisers

Considered the specialised opportunists, such fungi are present within the sapwood or bark, as propagules (thick-walled resting spores known as chlamydospores). Biding their time until conditions are right, wherein the sapwood becomes dysfunctional through means such as wounding or drought (causing embolism), they are perhaps most acutely observed in the years after drought years where they can trigger the formation of strip cankers and resultant reaction growth by the tree (see the below photo). Thus, this year, in the UK, is one to watch out for, as regards such fungi (it might also explain why Kretzschmaria deusta was so abundant this year, given Ascomycetes love dry conditions, which prevailed last summer).

B nummularia Eutypa spinosa beech canker strip
A strip canker in beech caused by the latent fungus Biscogniauxia nummularia that has induced reaction growth, which can be seen cross-sectionally in the bottom right image).

At this point, a delegate enquired as to whether Massaria disease of plane (Splanchnonema platani), as an Ascomycete, could be prevailing in urban conditions recently, because of dry conditions (such as London, where it was been very severe these past few years but prior to that un-noticed). Discussions continued and Frank Rinn interjected to add his thoughts:

  • massaria progresses quickly in dry conditions
  • recent dry summers have allowed for massaria to thus progress very rapidly (killing branches in as little as three months)
  • the lowering of water tables in cities for the construction of basement levels of buildings has meant that plane trees can no longer tap into groundwater supplies
  • mature plane trees afford the best conditions for massaria; notably lower lateral branches, which are shaded from the rest of the crown and thus may be most prone to stress
  • there have been reports since 1903 from Croatia where large plane trees have shed branches and the massaria fungus was termed the “branch-cleaning fungus”
  • conditions are collectively ideal for massaria to become prevalent, as they stand

Reverting back to latent fungi, Lynne then mentioned that she considers fungi to be latent across a broad variety of trees. For example, the coal fungus (Daldinia concentrica), whilst found most often on ash (Fraxinus excelsior) can be isolated from the sapwood of a great range of different broadleaved tree species in the UK. It is, indeed, only when specific conditions arise that are preferable for this fungus that it begins to create mycelial networks – such conditions might not arise in particular trees, or may arise only after conditions suitable for other fungi have arisen and thus D. concentrica then has no capacity to colonise the substrate. Hence, ash remains the core host of this species, in the current climate. However, for the jelly ear fungus (Auricularia auricula-judae), which is also a latent fungus within the vascular system, having been found largely solely on elder (Sambucus nigra) in the 1950s, it is now found on over 20 host species – this marks a huge increase in host range, prompted perhaps by changing climatic conditions.

Wall V

The CODIT model, offered to us by Shigo, details four walls – as can be seen here. As mentioned by Frank Rinn, Shigo himself was considering the possibility of a fifth wall, though this never ‘made it into’ the model. However, Lynne argues that there is the potential for a fifth one, which hearkens back to what was discussed above, as regards rot within the heart of beech wood).

Specifically, whilst the barrier zone (fourth wall) is a zone laid down at the time of wounding by the vascular cambium, the dynamic responses by the tree that occur in real-time as fungal decay advances constitutes a distinction from this initial barrier. Indeed, as decay advances, living cells within the heartwood or ripewood (they do exist; though through mechanisms not fully appreciated, but thought to be associated with the rays running radially through the wood), in addition to the functional sapwood, will, in order to protect the sapwood and keeps its high-moisture quality intact, will plug woody cells beyond the current zone of decay with extractives and phenolic compounds – this will occur within the sapwood most often, though may also be able to occur in the heartwood around the regions where pockets of living cells exist. This response resultantly produces incredibly dense zones of wood that afford the tree’s sapwood a means of protection, which it would otherwise lack, assuming the barrier zone (Wall IV) failed to contain fungal decay. Of course, if this fifth wall fails, another will form, and so on and so forth.

Ganoderma pfeifferi beeswax beech failure 3
See the myriad of demarcations across this cross-section of a beech that failed from decay by Ganoderma pfeifferi, which suggest a dynamic fifth wall being effective.

Perhaps we will see this idea discussed more in Lynne’s re-write of Fungal Decomposition of Wood.

Fungal succession

When a tree decays, the fungi that initiated the decay process will not end it. This is because, much like all other ecosystems, as an environment changes those organisms that are best-placed to utilise it change as well. In this sense, fungi are no different – they succeed into a dynamic and ever-altering substrate (wood). Such a phenomenon can be so readily observed when walking into any woodland, when comparing the fungi on standing trees and those in early stages of decay and those much more heavily decomposed. In instances where an entire tree falls and stays largely intact, succession can be most acutely observed, as Lynne detailed with a little help from Ted Green and some research students.

The tree in question, a mature beech, failed and was left, in sections, for ease of its movement into an accessible place, to decay. Along the beech, it was found, through analysis of the wood in the laboratory and by presence of fruiting bodies, different fungi were observed colonising different parts at different stages of decay (as shown below). Such an observation does seem readily apparent, though to have it confirmed through scientific means affords us with an understanding that is more concrete than merely the anecdotal. Indeed, whilst Trametes gibbosa was not isolated from this beech, the presence of Bjerkandera adusta infers that, at some point in the future, T. gibbosa will be found – it parasitises upon the mycelium B. adusta, before then colonising the wood substrate itself. We are, in a sense, therefore, witnessing fungal warfare.

beech fungi succession analysis
The different fungi found at different parts of the beech at different stages of the decay process (open in a new tab to see this in a slightly larger size).

Delving further into the notion of fungal warfare, what is essentially meant is chemical warfare. Fungi synthesise and secrete enzymes, which they use principally to degrade wood, though that can also be used to defend territory or attack other fungi. The result of any fungal battle can be one of four things:

  • deadlock, whereby neither fungi gains any ground against the competing fungus
  • replacement, whereby one fungus loses its territory entirely by the other
  • partial replacement, whereby one fungus loses of some its territory to the other
  • mutual replacement, whereby the fungi essentially ‘trade’ places with one another and neither gains any net ground

So how does one determine the outcome of any such skirmish, you ask? Unfortunately, there are so many variables in play that even pitting two fungi against one another in a laboratory is only going to give a slight allusion to what really occurs, though there does nonetheless exist a limited hierarchy of combativeness from which we can assume who the victor will be, under most circumstances (see here at 25:09 timestamp).

Of course, even in assessing this we still have so many caveats to throw in. For example, where moisture conditions are drier because the wood is more exposed, Ascomycetes (i.e. Hypoxylon spp.) will have a better time in securing more wood substrate, as they operate effectively under dry conditions. Indeed, the wood qualities of the substrate itself will even play a role – did the tree uptake pollutants during its life or is it exposed to such pollutants currently, for example. More crucially, if a dead piece of wood (or entire tree) is standing and has thus been subject to relatively dry and exposed conditions suddenly falls to the woodland floor, those fungi reigning when the tree was standing will likely succumb to wood-decay fungi adapted to higher moisture levels and cooler more stable conditions.

The next part of this series will be a brief one on bacteria in wood, as discussed again by Lynne Boddy. I hope to have that written up in the coming few days.

Fungal succession and wood decay in living trees – a seminar report (Part II)

Fungal succession and wood decay in living trees – a seminar report (Part I)

See part II here.

First and foremost, it is absolutely critical for me to extend my deepest thanks to Jon Hartill of Hartill Trädexpert for organising such a superb single-day event (here is an overview of the itinerary) in Sweden. Indeed, bringing together three such critical speakers (Ted Green, Lynne Boddy and Frank Rinn) who, as was expected, but more acutely so in hindsight, worked well as a unit and offered much in the way of vital information and data, was not likely a simple task. Of course, it worked, and my 12 pages of hand-written scrawlings is testament to this. Thus, the purpose of this blog post (or posts, should I say) is to share the information gathered, so that it can be disseminated more widely and stimulate thoughts amongst the internet audience.

sweden delegates seminar fungi decay trees
Some of the delegates from this seminar. As you’ll see from the below picture, the setting was also rather fitting for a discussion on trees…
sweden delegates seminar fungi decay trees 2
Say hello to the town of Kungalv!

Ancient trees – what secrets remain?

The day was opened by Ted Green, the founder of the Ancient Tree Forum. Here, however, his role was not so much to discuss what is known of our ancient trees, but of what we still need to know – what don’t we know? Granted, there’s probably an utterly frightening amount we are yet to understand, though Ted’s talk was not to wallow in such an angst but instead to prompt directed focus towards aspects of ancient trees we really do need to understand next.

Principally, it was important to set the tone of the presentation: hollowing is an entirely natural process, which very few ancient trees escape. In fact, do they even want to escape such a ‘fate’? Arguably, the answer is no. Anyway, at this early stage, Ted made the distinction between the decay of central wood, separating the decay of heartwood (i.e. Quercus) and the decay of ripewood (i.e. Fagus). ‘True’ heartwood forms when phenols and other extractives and toxic substances to fungi are deposited within the non-living (largely) woody tissues, as sapwood becomes redundant. Ripewood, conversely, forms via different mechanics associated with wounding and other events. However, this was a point posited just to illustrate context, more than anyway.

The real ‘meat’ began when Ted began assessing where the notion of hollowing being bad came from: forestry. As an economic practice, it is obvious that hollowing would be seen as destructive, as basal decay hampers return upon the investment of a stand. Despite this, when moving away from forestry, we can observe that hollow trees don’t drop like flies under wind-loading events – as was the case when the 1987 storm (hurricane) hit the UK and hollow trees stood whilst solid neighbours fell. Certainly, hollow trees did fail and when they did it was oft at the point where the internal hollow met sound wood, though the general jist is that hollowing does not necessarily infer a risk of failure beyond that of what a solid tree would be considered to possess. Ted speculated that this hollowing meant that, under wind loads, the main stem could flex and ‘safely’ deform (a bit like a hosepipe when squeased slightly) under tension and torsion, thereby protecting the stem from forces that could overload a solid stem, which cannot deal with such a load in a similar manner (because it is not hollow, to any degree). In oak, for instance, Pseudoinonotus dryadeus (the Eiffel Tower fungus) can actually be seen as a fungus that aids with tree stability, by prompting pronounced buttressing and the creation of wood that over-compensates for the more centralised decay (as was discussed by Frank Rinn later on), whilst also allowing for the oak to deal with wind loading more effectively, given the presence of the hollowing internal to the trunk.

Pseudoinonotus dryadeus colonisation senescent old 7
Strong buttressing as caused by Pseudoinonotus dryadeus decay on oak. Does the internal hollowing even impact upon the tree’s structural stability, assuming the buttress roots laid down afford the necessary support? Thus, dooes pruning even have a beneficial impact upon reducing risk, when accepting that pruning damages the tree’s ability to photosynthesise and thus manufacture the sugars demanded for wood formation in these buttress zones?

Indeed, reaction growth comes in forms beyond buttressing – stems also flute; sometimes, quite majorly, in mature and veteran trees. This fluting can, in times of wind loading, afford the tree additional stability, through the over-compensated high wood quality, which allows the tree to deal with loading forces by acting akin to a coiled rope. Certainly, torsional loading against the direction of fluting is going to be a marked issue, though otherwise such fluting can be beneficial for stability – even when there are appreciable central hollows. In fact, this led on to another important point: the extent of hollowing and the resultant residual wall thickness (think Mattheck’s t/R or part of the Wessolly’s Statics Integrated Approach model) means very little, as it assesses a tree in blatant disregard for its wider context (exposure, lean, leaf area, wind drag coefficient, management history, the off-set nature of the hollow, etc). Without appreciating these factors, of which there are numerous, how can one state that hollowing is bad and will increase the risk of tree failure?

The talk by Ted then actually moved away from hollowing somewhat and onto other aspects of ancient trees. Specifically, the practice of pruning arose, wherein Ted commented that pruning back to the branch collar in older trees is potentially more destructive than leaving stubs – stubs that will afford epicormic growth and the formation of a new crown / part of the wider crown area. Interestingly, he used the example of beavers felling trees not at their base but a little up from the base, from which these trees oft repsrouted and formed natural coppice. The same, he suspected, could be the case for aerial pruning – leave a stub.

This consideration took Ted onto further points, of which the main one was that of where trees fail most routinely. Indeed, aroung 70% of all failures within a tree at at the branch level – of these, many fail not at the collar but out along the branch itself, thereby leaving a stub. Using examples of trees from Windsor and elsewhere that failed in such a way, he demonstrated that new but lower crowns were formed in the years after; even in cases where every single major limb failed on the tree, thereby creating a tree form like what can be seen in shredded trees.

veteran tree natural shred wind hurricane
An oak tree that lost almost all of its crown in the years after the 1987 storm. Only one limb actually remains (red square). The other limbs all failed (green arrows) and have since resprouted and formed a new crown. Should we be managing our older trees like this and, to extend this question, should we be managing all of our trees like this, if we are to mimic natural forms of failure?

Further to this, Ted got talking root failure in strong winds. In his experience, following the 1987 storm, some older trees began to decline either partially (in select area of the crown) or wholly in the years following, for no outward apparent reason. Ted’s suspicion is that, in place of aerial failure, structural roots failed and the connectivity to specific connected parts of the crown from these roots thus was severed, triggering localised dieback and retrenchment. Therefore, the question of whether localised root plate damage caused localised aerial dieback in older trees was asked and, assuming the answer was that this does occur, it could actually be beneficial for the longevity of the tree – it can retrench, form a lower crown and thus increase its safety factor. In fact, it would also suggest that the occurrence of fungi such as Meripilus giganteus on older trees, in certain instances, would be as a consequence of saprotrophism, in place or parasitism – the fungus follows the root damage and metabolises the severed roots. I then asked Ted whether he thought that the same phenomenon could occur in grazing ecosystems, in which cows, pigs, sheep or otherwise are grazed amongst wood pasture. His answer was one of grazing also being a cause of retrenchment, wherein grazing pressure damages certain structural roots and this leads to subsequent localised aerial retrenchment.

root damage crown retrenchment tree wind
Can select root damage under wind-loading conditions bring about select crown retrenchment, through the connection of certain roots to certain portions of the crown? If so, can this damage, assuming not all roots are severed, improve the longevity of the tree and increase its stem’s safety factor, in spite of hollowing and major yet probably transient dieback?

Other questions raised within Ted’s talk were as follows: (1) are animal pharmaceuticals, often in the form of de-wormers, harmful to the mycorrhizal networks and the tree’s rhizosphere (i.e. soil biota), when they are excreted by the animal in the vicinity of the tree?, (2) is acid rain the most damaging impact upon our old trees, because of its impact upon the soil?, (3) are earthworms the most crucial soil organism for older trees, given their ability to aerate soil and to recycle nutrients by consuming absiced leaves (including those where over-winter pathogens reside, such as oak mildew), and (4) does stress throughout the tree’s life give it the best chance of reaching the veteran or ancient stage, when noting that slower growth and a more responsible management of energy is more sustainable? To these questions, we do need more research.

Take-away points from this talk are, therefore:

  • major hollowing of trees isn’t perhaps an inherently bad thing – notably in older trees,
  • we need to understand the species-specific and age-specific impacts of fungal decay upon trees before confidently exclaiming an increased and unallowable risk of failure,
  • a tree’s situation and history has a direct and marked impact upon the risk brought about by a hollow
  • damage to tree roots on older trees and the possible associated crown effects demands more investigations,
  • we need to determine how we should be pruning older trees, if we are concerned with their longevity, and
  • the rhizosphere’s importance for the health of older trees is a very viable area of research

I’ll write part II up in the coming times, which will focus on Lynne Boddy’s presentations. The third part will be Frank Rinn’s incredible afternoon talk.

Fungal succession and wood decay in living trees – a seminar report (Part I)