Book review: Manual of Tree Statics and Tree Inspection

First and foremost, for those interested in purchasing the English version of the book, you can do so via the publisher Patzer Verlag, Summerfield Books or the Arboricultural Association. It’s not a cheap book and thus, for many, demands strong consideration before purchase, which is one of the core tenets behind why I wanted to read and review this book promptly following on from its publication. Therefore, my intention with this review is to give more information about the book over and above simply the listing of the chapters and sub-chapters, which are provided by the book sellers. Hence, interspersed amongst my review are photographs of the book, which will hopefully help guide you in your decision-making process. In fact, here’s an image for you, off the bat!

P1270705
Quite a nicely presented hardback. The select illustrations you see on the front here occur throughout the book – hardly a page goes by where there isn’t at least one such image.

As regards the content, therefore, the book begins with a very succinct introduction followed by an extensive assessment of the countless aspects pertaining to tree biology. This biology section is adorned with illustrations that, as is the case across the entire book, help greatly with the simple conveyance of the core messages put forth by the authors – indeed, as is so prevalent and well-received across Mattheck’s works (in spite of the disagreements the autors have with the t/r ratio and h/d ratio, which they detail within). Somehow, I doubt this inclusion of illustrations is coincidental and instead a homage or emulation of what works well when describing detailed concepts in only a few words. Critically, with a book detailed as one that covers tree statics, the incorporation of tree biology into the statics model is included, which keeps the book on track from the beginnings and saves it from veering off course into just one that echoes prior understanding.

At this point, an interjection is necessary. Specifically, for the purpose of highlighting some of the very curious qualities of this chapter – in the good sense. Principally, an addition to the developing understanding of summer branch drop is provided, whereby the authors detail that, on top of the impact drought has on the failure of large branches, temperature plays a possibly significant role. Why, you ask? Because, as the authors detail, the pretensioning of a tree’s wood fibres (i.e. the manner in which it loads itself under its own weight and optimises itself for this) is lessened by heat, which relaxes the wood fibres – including atop branch junctions. When compiled with the fact that trees are much stronger under tension than compression, the developing compression zones underneath the branch junction (and just behind the branch collar) as the wood fibres relax atop build up and, alongside other factors (including drought and probably many other unknown variables), the branch can subsequently suddenly fail. The authors delve into this phenomenon more in the third chapter and beyond. Other intriguing and enlightening aspects of this second chapter include the remarks on how construction works impact upon tree stability, in addition to the efficacy of ivy to be both a bane and a blessing for the tree, as regards oscillation and damping during wind loads.

It is however the third chapter that arguably provides the most appreciable benefit to the reader, as it takes us into the realm of tree statics in the direct sense. The intricacies of the chapter will, of course, largely evade this review, as the intention of this post is not to ‘spoil’ the contents of the book to any marked degree and make its purchase redundant. Instead, what can be said is that it delves effectively into critical facets of statics and, in my personal opinion, the segment on wind loading and the impact of crown architecture and elevation on loading forces is most brilliant – even down to the illustrations and mathematical examples, which really do simplify an evidently complex engineering approach to tree risk assessment.

P1270711
A segment from this third chapter, demonstrating how the authors blend text with diagrammatic models and more general illustrations.

Moreover, the discussion on the importance of hollowness for trees and why it should not always be considered a concern to the tree inspector is welcomed (unless it’s an open cavity and then, please, do be more worried straight off of the bat). In fact, and I quote: “the dimensions of a cavity in a tree have absolutely no informative value, as long as the occurring loads are not known.” Therefore, the t/r ratio Mattheck provided, the authors allege, is meaningless and incorrect.

Amazingly (from a factoid perspective), the authors then detail that a tree with a dbh of 1m and a central cavity leaving only 10cm of sound radial wood around the circumference has the same load-bearing capacity as a tree that is completely sound and has a dbh of 84cm! Of course, from an angle of understanding where the maximum loads occur, the fact that wood fibres stretch and compress far more at the outer sections of the stem than they do internally (with the neutral axis generally being the centre) gives credence and context to this assertion. The understanding of hollowness on older (veteran) trees is also discussed in a very articulate manner and, as it so seems, the greater risk for such trees is not failure of the trunk or root plate but of large lateral limbs attached to a hollowing trunk that can no longer sufficiently support such a mechanical load.

On this note, the outlining of root plate architecture is also deserving of mention. In this third chapter, the authors do a superb job of explaining why and how root plates fail and why, for all intents and purposes, extensive buttressing and adventitious rooting is not necessarily to be looked upon as defective. Using the example of a mature beech (see a below photo that I took recently), they allude to the often very pronounced root plate acting as a counter-balance to the lever arm that is the trunk (think of a very wide-based wine glass and compare it to a narrow-based one – which tilts more readily?). Indeed, where fungal decay is evident, as in the below photo, the effectiveness of the wide root plate comes into question, however.

Fagus sylvatica mature buttressing Ganoderma Meripilus 8
The admirable root plate of a mature beech. In this case, Ganoderma australe is compromising the butt and principal rooting structure, though where decay is not evident or is limited then a wider root plate is very effective at supporting the tree during times of wind loading – certainly more so than where such a wide root plate is not evident, on mature beech.

At this point, the notion of slenderness also enters the equation and, very curiously, the book asserts that slender multi-stemmed trees are more likely to oscillate excessively in wind loading conditions and fail, when compared to single-stemmed trees of equal slenderness. However, more crucially, why slenderness equals higher oscillatory frequency and thus denotes a greater risk of failure is detailed, which drives home the importance of not thinning out groups of trees and expecting the remaining ones to be able to stand wind-firm (the so-called ‘domino effect’ is also defined, whereby trees at a woodland edge successively fail, as those around become exposed after an initial tree fails and then those around it also fail).

And my favourite quote(s) of the third chapter? In reference to reaction growth laid down by the tree due to decay or other structural matters: “the development of symptoms is an expression of the vitality of the tree, not of its weakness” and that “focussing on so called symptoms can be absolutely counterproductive” – assuming, of course, you don’t quantify the weakness by ascertaining its load-bearing capacity (which is where statics comes in). Assumptions, therefore, are not good (though we all do assume, every day, when we assess trees, when working with outward symptoms solely).

P1270710
A segment of the fourth chapter. This double page spread is certainly one of the rarer examples of where illustrations do not dress the paper in abundance.

Moving into the fourth chapter, we’re first greeted with a rather novel take on tree assessment: do not negate the emotional aspect of the act. To be precise, from this, I understand it as the authors inferring that the intuitive assessment of a tree, from afar, takes into account both our logical deduction of its form (based on the scientific understanding of what denotes good structural architecture in trees) and surrounds (targets, exposure, etc) and also its innate emotional ‘appeal’ (i.e. is the tree ‘harmonious’ and flowing well, or is it a rough and jagged structure that is abrasive to the eye and clearly there is something awry that demands more investigation). Here, the authors then throw in the concept of a female breast being harmonious (and not at all like a brick…!) to a child, who can appreciate the allure of that particular aspect of female anatomy for its biological purposes. I presume this wasn’t a translation error (of which there are a few, across the entire book, but it largely flows very well)! Thus, trees are like female breasts: harmonious (I could end the review here, quite frankly, for the comedic value).

Anyway, this fourth chapter then goes on to outline, to a very detailed degree, with the support of various diagrams in the sixth chapter (the ‘Annexes’), more about SIA (static integrated assessment). For something that I admittedly had considered quite complex, which it still certainly is, the authors do a stellar job in simplifying the concept and utilise diagrams and drawings to help ensure the reader can understand the message being conveyed. The explanation of the rationale behind why this methodology, provided in preceding chapters and also in this one, helps to contextualise the methodology and, quite truthfully, it’s a form of tree assessment that I am now keen to put into some form of practice. The statement the authors make about microdrills essentially being redundant now that sonic tomography has arisen from the mulch is also a curious one, which is deserving of some consideration, when appreciating that the former causes damage to trees and the latter, almost wholly, does not; in addition to the ability for a tomograph (i.e. PiCUS or ARBOTOM) to plot an entire cross-section and not just track the path of a single drill bitand provide information from that sole path.

A further useful segment within the fourth chapter is that of the pests and pathogens of the leaves and shoots of many common European tree species and genera. Indeed, the assertion that horse chestnut leaf miner is not solely an aesthetic issue is a welcome one, as for whatever concerning reason that understanding of it being only an aesthetic pest is still accepted by some in the industry. The section also has a really nice little bit of information on Massaria disease of plane, with a distinct Teutonic angle (as one would expect, from German authors).

P1270725
A double page spread of the section of pests and diseases of the shoots and leaves of trees common to Europe.

The (‘technically’) last chapter, the fifth, draws upon the information provided within all prior chapters and provides the reader with guidance on how to, following the identification of a need to manage the tree (be it a newly-planted tree or veteran in a park or construction site), effectively enact a management regime that will be of benefit to the longevity of the tree in the landscape (this is why we manage many trees in ways that doesn’t see them get felled). Indeed, this chapter presents a lovely succinct look at the need to strongly consider management options, as in deciding upon a route there is then, in theory, no going back upon that decision (once scheduled work has been completed).

The encouragement by the authors to refrain from using a rigid support system, be that system a stake for a young tree or steel braces for old trees with slender co-dominant limbs, and instead utilise a flexible and dynamic system, is therefore well-received, as they present their argument in a sound and logical manner. Importantly, for bracing, the authors even go so far as to detail what angle a brace should be applied at and the load that it should be able to bear relative to the size of the parts being connected, which elevates this book to a level beyond that of others that, from memory, do not provide as much detail. Their comments on propping with A-frames and not upside-down V-frames are also welcomed and articulated so well with so few words. Again, illsurations really help instruct the reader and break the text apart, thereby making the reading more ‘bite-sized’.

limb propping tree lateral load a-frame
This duo of props fails to suppprt the limb against lateral forces, given their design. In lacking an A-framed design, these props are thus not optimally positioned to keep the limb of this sycamore from failing under a torsional load.

Finally, the appendices presented in chapter 6, which support many of the assertions made in the earlier chapters, arrive. There exist some fabulous tables showcasing the wood properties of different tree genera (cellular make up, strength, etc), the speed at which tree genera move water up the trunk in metres per hour, the compartmentalisation ability of different species and genera, and a comparison of various forms of tree assessment and their strengths / weaknesses. Also within these annexes is information on how hollow trees fail and a description of principal wood-decay fungi and their significance. The fungal section is limited in detail and species diversity (because it’s only an annex and thus cannot possibly be as detailed as a dedicated book on fungi) though, concerningly, the brittle cinder (Kretzschmaria deusta) is described as a white rot in a comparitive table (whilst being correctly marked as a soft rot in its descriptive text). Proofing of the text should have picked this up, as it is perhaps the most significant mistake in the book (all other issues identified are largely translation errors or typos, from what I could spot). The comments on Perenniporia fraxinea preferring robinia (Robinia pseudoacacia) over any other host tree in urban areas where soil is compacted are, nonetheless, very interesting. Anecdotally, I can understand and agree with this assertion.

So, my thoughts to summarise? This is a very useful book that serves not only as a primer for the statics integrated assessment model but also for tree visual assessments on the whole. The eagerness of the authors to promote analytical thinking of the reader was pervasive throughout and, in some respects, this book could essentially serve as a 101 for tree inspections and management to any tree inspector. Of course, the title alludes to this by referring to tree inspection, though I admit I was taken aback (in a positive sense) on how much breadth this book covered in so few words and so many images. For me, the mix works well and therefore the looming threat of a wall-of-text was evaded. Perhaps it is just me, though I can pick up influences from Shigo and Mattheck, in the use of few choice words to describe complex matters and to support such words with harmonious (see what I did there?) images.

If you have around £115 to spend and want a book that you can refer to routinely, this will be worth purchasing. Don’t think you’ll be getting an impossibly wordy book that delves into tree statics down to the minute level, however. That is reserved for other literature and, in my perspective, rightly so.

Book review: Manual of Tree Statics and Tree Inspection

Book scores; including on tree statics (!)

The library amasses further numbers with the below six books, which arrived during this month. All, quite obviously, pertain to trees and the landscape, and of notable interest will be the new tree statics book that was recently translated into English from German and published. Expect a detailed review of this book in the coming few days (currently around half way through reading it).

As always, links to where you can buy the books are given at the end of this post. Note that those ordered from Oxbow were acquired for a good third of their suggested retail value, as they were doing a clearance sale. Quite honestly, for anyone who likes anything to do with landscape history and ecology, bookmarking this particular publisher and distributor will yield some awesome results. For tree lovers, the imprint Windgather Press is probably one to keep a tabs on, as many of the books published involve trees.

new book purchases tree statics

To the left, we have a very interesting book on the mapping of Norfolk by William Faden and how the landscape has changed from then through to now. Tom Williamson, one of the authors, is a prominent authority on landscape history and thus the book does delve into the rural landscape of Norfolk and, to a degree, arboreal heritage. I picked it up for £10 (down from £30), and as of the time of this blog post it is still on sale and can be purchased here.

Along the top row working from the left, we first have the new book on tree statics and visual assessment, which, as I mentioned, will feature as a detailed review in a coming blog post. It’s certainly an expensive book so it is one to research before purchasing. By all means, await my review before deciding. This book I acquired for £115 from Summerfield Books at this link.

Adjacent is what looks to be a truly captivating book on the Cedar of Lebanon and its prominence in human history. From my readings on this tree in the culture and religion of many historic peoples, this will be next on my list of reading material and will undoubtedly be rich in information that helps build my view of the tree further. As a very recently publication, it can be purchased via Archaeopress for £36 here. Please, consider trawling their book store as there are some other very great books they sell that involve trees and the natural landscape.

The lower duo are books on the historic gardens of Derbysire (left) and hedgerows across Britain (right). Following on from the information provided in Mark Johnston’s Trees in Towns and Cities: A History of British Urban Arboriculture, I have been keen to learn more about pleasure gardens and earlier arboretums / plant collections, so this book specific to Derbyshire will hopefully supplement my learning on this front and can be bought here from Oxbow Books. As for the latter, the detailed exploration of hedgerow characteristics and distribution throughout Britain is somthing that, would you have guessed, I also find intriguing. Indeed, hedgerows have historically – and still are – being gutted, for a variety of reasons, which means understanding what makes them unique (even down to a specific region) and crucial ecological and cultural features very necessary. This book is currently reduced from £25 to £10 on Oxbow Books and can be purchased here. The book is clad with images and can easily be read entirely in a day.

The last book, which is all the way to the right, further expands upon my desire to learn more about botanic gardens. Instead of Derbyshire however, this book takes the reader to Manchester – specifically, the Manchester Botanic Garden. At £5, though reduced from £25, its acquisition was a no-brainer and, from scanning the book, it appears an utter steal. Again, this was purchased via Oxbow Books via this link.

Keep an eye out for my review of the tree statics book. Hopefully, if all goes to plan, it’ll be online before the close of the bank holiday.

Book scores; including on tree statics (!)

Interesting cases of wood-decay fungi

I have been absurdly busy so haven’t been blessed with the time to get some blogging in, though I have been graced with thirty minutes of time this evening so without any further utterings we’ll delve right into the good stuff – trees and fungi (in my usual frenetic and incoherent manner). Plus, listening to some early Hawkwind has really got me in the mood to do something useful!

The cases are all from an absolutely splendid park down in Maidstone – Mote Park. Honestly, if you live anywhere near there, do pay it a visit and explore as much as you can (it’s massive!). The sheer abundance of mature and veteran trees provides for a magnificent display of fungi and, so I am told, there is a need to record the saproxylic insects on site on the many monoliths and moribund trees.

To kick this post off, I take you to a very interesting case of Pseudoinonotus dryadeus on oak – three of them, all of which are within 8-10m of one another and share a crown. All fruitings of the fungus are historic though its presence on all three trees makes for some tempting considerations – namely, the synchronicity of fruiting (are they similar genotypes?) and the means of colonisation (spore or something else?). Indeed, I can only infer some sort of fungal mysticism or sorcery in positing both aspects for consideration (there is no proof of either, per se), though it did make me think. Perhaps it will make you readers think as well! (!?)

Pseudoinonotus dryadeus colonisation senescent old 1
The recipients of the Manchurian Candidate!
Pseudoinonotus dryadeus colonisation senescent old 2
Exhibit one!
Pseudoinonotus dryadeus colonisation senescent old 3
At the base (to the left).
Pseudoinonotus dryadeus colonisation senescent old 4
Quite an old bracket but a bracket nonetheless. Lovely buttressing, too.
Pseudoinonotus dryadeus colonisation senescent old 5
Exhibit two. More brackets and more buttressing.
Pseudoinonotus dryadeus colonisation senescent old 6
Shame these got yanked off, too.
Pseudoinonotus dryadeus colonisation senescent old 7
Exhibit three! SOme glorious buttressing here, yet again. Thus the fungus gets its common name: the Eiffel Tower fungus.
Pseudoinonotus dryadeus colonisation senescent old 8
Old, dead (not really but who cares for semantecs?) but not forgotten.

And then…and then…more Pseudoinonotus dryadeus – literally 100 yards down the same path. Oh how Mote Park delivers! This example also really does demonstrate the magnificent buttressing induced by its decay on oak, as you’ll see.

Pseudoinonotus dryadeus mature oak butt decay 1Pseudoinonotus dryadeus mature oak butt decay 2Pseudoinonotus dryadeus mature oak butt decay 3Pseudoinonotus dryadeus mature oak butt decay 4Pseudoinonotus dryadeus mature oak butt decay 5

Would you then believe it? Essentially opposite (no joke) were two colossal beech trees fenced-off (as if that ever stopped me??!) that, as anyone who has seen mature or veteran beech buttressing all over the place like egg whites pour out of a broken egg when broken too aggressively (nice analogy? – likely not), drew me in. Was I disappointed? Not at all! Ganoderma australe and Meripilus giganteus all over the option.

Fagus sylvatica mature buttressing Ganoderma Meripilus 1
Good cop (right) bad cop (left) – something something pun something something copper beech and tell better jokes
Fagus sylvatica mature buttressing Ganoderma Meripilus 2
The copper beech to the right with roots all over the option.
Fagus sylvatica mature buttressing Ganoderma Meripilus 3
Ganoderma australe and Meripilus giganteus – dual decay. Decay squared? That raises a good thought – is decay by more than one fungus simply a cumulative issue or instead a geometric or even negatory issue (i.e. is decay of two types ‘less serious’ than from one only)? Question galore and no answer. Someone ask an expert!
Fagus sylvatica mature buttressing Ganoderma Meripilus 4
Merip (foreground) and Gano (background). Also plenty of blades of grass for the monocot enthusiasts who stumbled across this blog because I wrote the word monocot.
Fagus sylvatica mature buttressing Ganoderma Meripilus 5
Ganodeerma australe being illuminated by a sunburst.
Fagus sylvatica mature buttressing Ganoderma Meripilus 6
The diddy little brackets further up the stem weren’t blessed with sun.
Fagus sylvatica mature buttressing Ganoderma Meripilus 7
And between some more buttresses there were some more Ganodermas.
Fagus sylvatica mature buttressing Ganoderma Meripilus 8
Onto the plain old beech now. Exquisite buttressing here!
Fagus sylvatica mature buttressing Ganoderma Meripilus 9
Did someone say fungi?
Fagus sylvatica mature buttressing Ganoderma Meripilus 10
Nope – nothing to see here.
Fagus sylvatica mature buttressing Ganoderma Meripilus 11
Nor is there anything to see here. I’m just tired of writing captions!
Fagus sylvatica mature buttressing Ganoderma Meripilus 12
Oh look, finally. Something. Some nice husks. Probably some Ascomycetes on them (Xylaria carpophila).

To finish up, because I’m getting tired and I am up early tomorrow, here’s something to sit on whilst you ponder the plethora of ultimate questions spewed forth from my mind with little restraint – a dryad saddle. The host? Not sure – lots of ash about though one can never rule out sycamore (unless you’re in the middle of a Douglas fir plantation?). These had actually already over-matured, which means you can see dryad saddle (i.e Cerioporus squamosus – named, prior to that, Polyporus squamosus) out there if you look!

Dryad saddle Polyporus Cerioporus squamosus 1Dryad saddle Polyporus Cerioporus squamosus 2Dryad saddle Polyporus Cerioporus squamosus 3Dryad saddle Polyporus Cerioporus squamosus 4

Interesting cases of wood-decay fungi

Trees in the conflict of Israel and Palestine

Everything written here is supported by sources I have referenced (check for yourself), as always, so do not treat this as an assault on either side and / or their respective religions. This post is through the lens of the tree, so treat it as such. Moreover, the entire topic is very interesting.

As Israel collides with Palestine, trees are – and always have – been caught up in the melee. Principally, olive and citrus groves, some of which may have been tended to for many centuries by the Palestinians (Temper, 2009), are bulldozed or otherwise uprooted, with little respect for their cultural and historical importance (Allen, 2008; Graham, 2002). As an example, in 1986, when the Israeli military seized Midya, over 3,300 olive trees were uprooted, and a further 2,000 olives were bulldozed in Qattana (Bardenstein, 1999). Some of the trees removed from Qattana were later re-planted within the Jewish sector of West Jerusalem (Lentin, 2000), though by that point the damage (in many an aspect) had certainly been done. Some Israeli residents did protest their planting (out of anger towards the state), by tying ribbons to the trees that contained messages such as “Take me back to Qattana!” (Bardenstein, 1999), whilst others, across the entire conflict, have chained themselves to the olive trees in order to stop the bulldozers from uprooting them (Sfard, 2009), supported Palestinian farmers by helping them harvest from their olive trees and, at times, defending them in the process (Stephan, 2003), provided replacement olive tree for those uprooted (usually by settlers), or helped to retain olive trees within occupied territories for their symbolic meaning of peace (Braverman, 2009) – “extending the olive branch“, per se.

26-palestine-bulldozing-afpget
AN olive grove being bulldozed. Source: The Independent.

Below the surface level of removing ‘enemy’ trees, the removal of olive trees has a very political undertone. Olive trees have been held in very high regard by Palestinians for generations (and are regarded by some as holy trees), where they were farmed and thus supported viable economies (Braverman, 2009; Cohen, 1993), and their removal (or ‘capture’, by where groves were encompassed into the territory of Israel) by Israeli forces therefore can also be interpreted as an attack on Palestinian culture and custom (Bardenstein, 1999; Bowman, 2007; Braverman, 2009; Kershner, 2005) – notably when such acts are supported by the Court (Sfard, 2009). In some cases, it may even be Jewish settlers who vandalise or cut down the olive trees (Kershner, 2005), and even when the Israeli army have allowed the Palestinians to harvest their olive crops. In such instances, the Israeli army will generally not intervene (Pigni, 2010).

Such a political (and, to a marked degree, religious) act may be most pertinently discerned when the olive groves (or individual trees) are captured or destroyed during harvesting season, which has indeed occurred in some instances (Batniji et al., 2009). Moreover, the fact that many olive groves have been uprooted (comprising of tens of thousands of individual olive trees – in Qafeen alone, 12,600 olives were uprooted for this reason) for the construction of the Separation Barrier in the West Bank was also a cause of huge upset, for the Palestinians; particularly when their uprooting was coupled with justifications including to construct watchtowers, roads, checkpoints, and other security fences (all of which further hamper daily life and privacy), in addition to the use of the groves for sheltering armed Palestinians (Braverman, 2009). For those groves not uprooted, the Separation Barrier may instead have isolated Palestinian farmers from their olive trees, for much of the year. In Qafeen, over 100,000 olive trees suffered this isolated fate.

2645634868
Olive trees are removed to facilitate the construction of the Separation Barrier. Source: Haaretz.

Whilst the capture and removal of Palestinian groves has been ongoing, Israel has also been afforesting barren regions of its territory – and for many decades. Spearheaded largely by the Jewish National Fund that was established in 1901 (and since 1961 has been Israel’s exclusive forestry agency), the afforestation program was, at its core, a religious, ecological, and territorial pursuit (Amir & Rechtman, 2006; Bardenstein, 1999; Braverman, 2009; De-Shalit, 1995; Ginsberg, 2000; Stemple, 1998; Tal, 2013), with pine species (including Pinus halepensis) being particular favourites (Osem et al., 2008; Weinstein-Evron & Galili, 1985). In recent decades, the emergence of numerous pests associated with the pine (such as Matsucoccus josephi) has however led to more diverse plantations, with other pine species (including Pinus brutia) and deciduous tree species being selected for use (Braverman, 2009).

In essence, a core reason for this afforestation is because Israel, in the ages gone by, was considered to be covered with forests (even up to the 11th century A.D., in places), though it is suggested that when the Jewish people were in exile those who occupied Israel (from around 722 B.C. – 1948 A.D.) destroyed many of these forests (due to arson, harvesting for fuel, overgrazing, sabotage, and warfare) and thus, upon the return of the Jewish people to Israel, in order to bring Israel back to its former character, forests were (and still are) planted upon the barren slopes (Stemple, 1998; Tal, 2012; Tal, 2013). Braverman (2009) states that the Jewish National Fund has planted over 200,000,000 trees across more than 225,000 acres of claimed land, since its inception. However, according to the Old Testament, in the book of Joshua, even Jewish peoples have been responsible for some of this historic clearance in their Promised Land (Tal, 2013), and for this reason the Jewish National Fund is seeking to restore Israel’s forests of ten thousand years ago – soon after the last glacial ice age. In fact, a great deal of planting, each year, is undertaken in the leading up to – and on the day of – Tu B’shvat (Bardstein, 1999; Zerubavel, 2000).

israel afforestation time contrast
Hiran Forest in 1998 (left) and 2008 (right). Source: KKL-JNF.

After the creation of the Jewish National Fund, though prior to its major afforestation practices towards the middle of the century, the British had, since 1918 (after they had seized southern Palestine), planted up many hundreds of thousands (if not many millions) of saplings (comprising of species including stone pine, tamarisk, terebinth, and oaks) on the hills of Israel (Tal, 2013), and before this (from 1860 onwards) the Turkish Ottoman Empire and settling German Templars had done much the same (Ginsberg, 2006; Liphschitz & Biger, 2004).

In this afforestation project, such planted areas are also oft designated as forest reserves and thereby protected by Israeli law, which Braverman (2009) dubs as “lawfare” against the Palestinians, whose land may have been afforested following seizure. This planting up of forest on occupied lands, of which a sizeable portion was planted over destroyed Palestinian villages in the years after 1948 (an act of camouflage, and for some allegedly the camouflage of war crimes), also makes the land very difficult to reclaim, as the reclaimers must first remove all of the trees (after gaining the permission to clear the perhaps protected forest); in this sense, Palestinians may never be able to occupy such land again, be it for living within or for cultivation. In some cases, Braverman (2009) writes, Palestinians have even retaliated against this afforestation by firing rockets into the planted pine forests or burning the pine forests through arson, with a desire much aligned to Israel’s uprooting of the olive trees (in a sense, a ‘tree for a tree’). In this respect the tree, and specifically the pine, is a tool of war, and thus represents the enemy as a solider would (Boerner, 2011; Braverman, 2008).

On a more philosophical level, the fact that the Jewish National Fund would plant a tree for each newborn from Jerusalem in Jerusalem’s artificially-borne Peace Forest, dedicate the specific tree to the child, and provide the individual with a certificate (including a photo of the tree) that remarks on how it is hoped the tree and child grow together, outlines the innate affinity (or interchangeability) man has with trees (Braverman, 2009); as is detailed before this blog post on earlier ones associated with trees and religion.

Furthermore, the populist and globally crowd-funded nature of a fair portion of the tree planting, supported via financial gifts (complete with material rewards, such as memorial stones) and the use of the ‘Blue Box’ (located in households, schools, and offices), sewed into the fabric of the afforestation project a very emotionally evocative and inclusive aspect to both children and adults of the Jewish faith, even if the donator was geographically separated from Israel (Bar-Gal, 2003; Braverman, 2009; Zerubavel, 2000). Perhaps, this ability for a Jewish person to fund the planting of a tree may dampen their feeling of loss for not living within the Promised Land; in place of their presence, they can fund the planting of a tree, which can be considered a “proxy immigrant” (Braverman, 2009). At a tangent, the returning of the landscape to forest is also important on a cultural level, because the forests were incredibly important for the Jewish peoples’ ancestors; often would children be named after trees, and even Israel itself was sometimes compared to a tree (Zerubavel, 2000; Zerubavel, 2005).

References

Allen, L. (2008) Getting by the occupation: How violence became normal during the Second Palestinian Intifada. Cultural Anthropology. 23 (3). p453-487.

Amir, S. & Rechtman, O. (2006) The development of forest policy in Israel in the 20th century: implications for the future. Forest Policy and Economics. 8 (1). p35-51.

Bar-Gal, Y. (2003) Propaganda and Zionist Education: The Jewish National Fund, 1924-1947. USA: University of Rochester Press.

Bardenstein, C. (1999) Trees, forests, and the shaping of Palestinian and Israeli collective memory. In Bal, M., Crewe, J., & Spitzer, L. (eds.) Acts of Memory: Cultural Recall in the Present. USA: University Press of New England.

Batniji, R., Rabaia, Y., Nguyen–Gillham, V., Giacaman, R., Sarraj, E., Punamaki, R., Saab, H., & Boyce, W. (2009) Health as human security in the occupied Palestinian territory. The Lancet. 373 (9669). p1133-1143.

Boerner, R. (2011) Trees as soldiers in a landscape war. Landscape Ecology. 26 (6). p893-894.

Bowman, G. (2007) Israel’s wall and the logic of encystation: Sovereign exception or wild sovereignty?. Focaal. 50 (1). p127-135.

Braverman, I. (2008) “The Tree Is the Enemy Soldier”: A Sociolegal Making of War Landscapes in the Occupied West Bank. Law & Society Review. 42 (3). p449-482.

Braverman, I. (2009) Planted Flags: Trees, Land, and Law in Israel/Palestine. USA: Cambridge University Press.

Cohen, S. (1993) The politics of planting: Israeli-Palestinian competition for control of land in the Jerusalem periphery. USA: University of Chicago Press.

De‐Shalit, A. (1995) From the political to the objective: the dialectics of Zionism and the environment. Environmental Politics. 4 (1). p70-87.

Ginsberg, P. (2000) Afforestation in Israel: a source of social goods and services. Journal of Forestry. 98 (3). p32-36.

Ginsberg, P. (2006) Restoring biodiversity to pine afforestations in Israel. Journal for Nature Conservation. 14 (3). p207-216.

Graham, S. (2002) Bulldozers and bombs: the latest Palestinian–Israeli conflict as asymmetric urbicide. Antipode. 34 (4). p642-649.

Kershner, I. (2005) Barrier: the seam of the Israeli-Palestinian conflict. USA: Palgrave Macmillan.

Lentin, R. (2000) Israel and the Daughters of the Shoah: Reoccupying the Territories of Silence. USA: Berghahn Books.

Liphschitz, N. & Biger, G. (2004) Green Dress for a Country – Afforestation in Eretz Israel: The first hundred years 1850-1950. Israel: KKL.

Osem, Y., Ginsberg, P., Tauber, I., Atzmon, N., & Perevolotsky, A. (2008) Sustainable management of Mediterranean planted coniferous forests: an Israeli definition. Journal of Forestry. 106 (1). p38-46.

Pigni, A. (2010) A first-person account of using mindfulness as a therapeutic tool in the Palestinian Territories. Journal of Child and Family Studies. 19 (2). p152-156.

Sfard, M. (2009) The Price of Internal Legal Opposition to Human Rights Abuses. Journal of Human Rights Practice. 1 (1). p37-50.

Stemple, J. (1998) Viewpoint: a brief review of afforestation efforts in Israel. Rangelands. 20 (2). p15-18.

Stephan, M. (2003) People power in the Holy Land: How popular nonviolent struggle can transform the Israeli-Palestinian conflict. Journal of Public and International Affairs. 14 (Spring). p164-183.

Tal, A. (2012) Israel’s New Bible of Forestry and the Pursuit of Sustainable Dryland Afforestation. Geography Research Forum. 32 (1). p149-167.

Tal, A. (2013) All the Trees of the Forest: Israel’s Woodlands from the Bible to the Present. USA: Yale University Press.

Temper, L. (2009) Creating facts on the ground: Agriculture in Israel and Palestine (1882-2000). Historia Agraria. 48 (1). p75-110.

Weinstein-Evron, M. & Galili, E. (1985) Prehistory and paleoenvironments of submerged sites along the Carmel coast of Israel. Paleorient. 11 (1). p37-52.

Zerubavel, Y. (2000) The Forests as a National Icon: Literature, Politics, and the Archeology of Memory. In Elon, A., Hyman, N., & Waskow, A. (eds.) Trees, Earth, and Torah: A Tu B’Shvat Anthology. USA: The Jewish Publication Society.

Zerubavel, Y. (2005) The forest as a national icon: literature, politics, and the archaeology of memory. Israel Studies. 1 (1). p60-99.

Trees in the conflict of Israel and Palestine

Street Trees in Britain: A History (new book, October 2017)

As I was trawling the depths of the Oxbow Books store, which is an utter treasure trove of books on various matters (many pertain to trees, hedgerows, gardens, woodlands, forests and the broader concept of landscape ecology – notably from the imprint Windgather Press), I came across a new book, to be released later this year, by Mark Johnston, the author of Trees in Towns and Cities: A History of British Urban Arboriculture.

So what is the title of this book? If you paid attention to the title, you’d already know, though for the sake of clarification it’s Street Trees in Britain: A History. As regards a description of the text, taken from the publisher’s page:

The trees which line many of the streets in our towns and cities can often be regarded as part of a heritage landscape. Despite the difficult conditions of an urban environment, these trees may live for 100 years or more and represent ‘living history’ in the midst of our modern streetscapes. This is the first book on the history of Britain’s street trees and it gives a highly readable, authoritative and often amusing account of their story, from the tree-lined promenades of the seventeenth century to the majestic boulevards that grace some of our modern city centres.

The impact of the Victorian street tree movement is examined, not only in the major cities but also in the rapidly developing suburbs that continued to expand through the twentieth century. There are fascinating descriptions of how street trees have helped to improve urban conditions in spa towns and seaside resorts and also in visionary initiatives such as the model villages, garden cities, garden suburbs and new towns.

While much of the book focuses on the social and cultural history of our street trees, the last three chapters look at the practicalities of how these trees have been engineered into concrete landscapes. This includes the many threats to street trees over the years, such as pollution, conflict with urban infrastructure, pests and diseases and what is probably the greatest threat in recent times – the dramatic growth in car ownership.

Street Trees in Britain will have particular appeal to those interested in heritage landscapes, urban history and the natural and built environment. Some of its themes were introduced in the author’s previous work, the widely acclaimed Trees in Towns and Cities: A History of British Urban Arboriculture.

Retailing at £30, you can currently pre-order it for £22.50, which seems like a relative steal. I would strongly recommend that, if you are to pre-order it, you do so via the publisher here, which supports them directly and will enable them to continue to press more books of a similar nature. At the very least, they’ve got a pre-order through me, though given many who frequent this blog are from the United Kingdom, I hope they’ll receive more interest (I’m sure they will!) prior to the book’s publication.

Street Trees in Britain: A History (new book, October 2017)

Trees, forests and warfare

As has been highlighted previously in this blog (the series on state forestry, for example), trees have been used to fund the gluttonous cogs of the war machine, across both time and space. Usually, this timber consumption has manifested from the progressive land acclamation and legislatory enforcement by the state, until large tracts of forest are state-owned; or private forests can be utilised by the state in times of political emergency. This post therefore focusses not on repeating what has previously been discussed, and instead investigates how the forests themselves have been used for the arts of war – as in, the forest as a site of battle, or for the preparation of one; not that the forest as a site of battle is to be desired, for any attacking force must expect the unexpected, and typical formations and approaches to warfare cannot be applied in the enclosed forest setting (Clayton, 2012). Of course, the prior blog posts I did on state forestry highlight how armed guerrillas in Indonesia and Zimbabwe used the forests for cover and ambush, though this aspect of forest use extends far beyond just these two examples.

Beginning somewhat close to home (for the author), it can be recognised how the New Forest, in the county of Hampshire, UK, was used by the British and American armies, during the Second World War (Leete, 2014). Because of its strategic location relative to the coast of continental Europe, residing along the south coast of England, and complete with nearby ports in Southampton and Poole, the New Forest was used as the first line of defence against any invading Germans coming over from France. For this reason, the forest was used by both the Intelligence Service, and also by thousands of troops who would constitute the defending force if enemy ground invasion did occur. Furthermore, the extensive forest cover provided camouflage for over 30,000 troops in the moths before D-Day (Operation Neptune) in 1944, and the surrounding heathlands acted as airfields and storage areas of military vehicles. In total, 20,000 acres of the New Forest were utilised by the resident forces, during the war, though much like how the forest suddenly filled with troops it also quickly emptied, and almost immediately after the D-Day landing at Normandy the New Forest once again became very sparsely populated.

eastern-warfare-school-brockenhurst-2
Troops training near to Brockenhurst, in the New Forest. Source: The New Forest Guide.

The Second World War, beyond its association with the New Forest, was the site of actual battle. One example is that of the Battle of Hürtgen Forest, which took place between the US and German forces through September 1944 to February 1945. Situated on the border of Germany and Belgium, the Germans occupied the forest because of its strategic importance to future offensives on the Rhine. Fearing that these German troops would eventually therefore support the front line, the US Army sought to take control of the forest to stall this pursuit. However, because the terrain was very uneven, the access routes through the forest to constituent villages were narrow and almost non-existent, the trees were very dense in many locations, and forest clearings sudden and sporadically occurring, support from tanks was not feasible, and navigating the forest was often challenging and certainly very risky. Subsequently, the US forces suffered losses of over 30,000 men (at times, entire units were lost), eclipsing those incurred by the Germans; in spite of their much larger size. Granted, the Germans also suffered huge losses (Rush, 2001). The forest was thus named ‘The Death Factory’, by the US troops (Whiting, 2000), and became the grave of many individuals from both sides of the conflict.

hurtgen
The 28th Infantry Division of the US Army journey through the intrepid forest on 2nd November 1944. Source: History Net.

Curiously, the close of the Second World War also saw forests treated almost as bounty or reparation; at least, in Germany. Following the defeat Germany suffered, the country was subsequently segmented into various zones: the south-west of Germany became the French Zone, whilst the southern and south-east segments were under control by the Americans, the northern and north-west overseen by the British, and the east and north-east by the Soviets. The purpose of this was to enable Germany to ‘repent’ its ‘sins’, and the occupiers – the Americans, British, French, and Soviets – could harvest the forests as they saw fit, as long as such harvests were not in excess of the reparation quotas detailed after the Potsdam Conference in the summer of 1945.

Unfortunately, as such quotas usually were far greater than the rate at which the remaining forests (many were in an alarming state of disrepair, commercially-speaking) of Germany could be replenished, the Soviet zone saw fourteen years’ worth of timber logged in just four years. Alongside the purging of these now Soviet-controlled forests, those foresters who were not drafted into the war effort by the German government at the time were forced to work as hard labourers in the forests, and the traditionally scientific method that was German forestry was quashed by the inexperienced Soviets. Similar unsustainable levels of forestry were undertaken in the other occupied areas of Germany, by the Allied governments (Nelson, 2005).

Beyond the Second World War, Clayton (2012) remarks that the forest has been the site of battle as early as 9 A.D. In this year, the forest of Teutoburg was to plague three Roman legions and their auxiliaries – who were ambushed by the allied local Germanic tribes after an uprising in the region – quite cataclysmically. In this case, the Roman legions were headed by the reportedly inexperienced commander Publius Quinctilius Varus, whilst the commander of the allied tribes was the Germanic nobleman known as Arminius, who had himself been trained by the Roman army and was in fact part of the Roman legions who were tasked to deal with the uprising of the local tribes, though quickly defected to lead the Germans into battle.

Under the order of Varus, who was persuaded by Arminius (who at this point in the saga was still in the Roman army and appointed as an officer), the Roman legions headed into the forest to attempt to quell the uprising; at which point Arminius defected, and gathered up to 50,000 Germans to fight against approximately 7,000 Roman troops and their horses (including the three legions of eighty men each). In this forest, the now-defected Arminius used the terrain (including steep slopes, fallen trees, and dense forest cover) to confuse and disorientate the armour-clad Roman legions and support troops, who at first became surrounded and then were torn apart by the nimble Germanic warriors equipped with lightweight weapons (such as darts) and, for close combat, broadswords and spears. Most Roman troops were killed within the forest, in the small units that fled in all directions after Varus (who committed suicide) declared a retreat, though some unfortunate individuals were enslaved and / or tortured by the Germans. Ultimately, this situation manifested because the Roman troops were geared for close combat in the open setting, and the clever use of the forest by Arminius and his warriors led to what can only be considered a Roman tragedy – a tragedy that would not have occurred, and in fact likely have been reversed, if the battle was undertaken in the open (Clayton, 2012; Murdoch, 2006).

zpage506
Varus is defeated within the forest of Teutoburg, as is depicted through this illustration. Source: Heritage History.

The use of trees during conflict has also given rise to their use for hanging and other forms of execution (Stone, 2008). Certainly a macabre aspect of how warfare – and on a broader scale acts of genocide – ties man to the arboreal world, it is nonetheless an important point to consider, as it highlights how the tree, as a tool, has uses that extend beyond those aforementioned. In the genocide that plagued Cambodia from 1975-1979, for instance, the Khmer Rouge, who were followers of the community party led by Pol Pot, are said to have thrown children against trees until they died – because trees were cheaper than bullets. In these cases, Tyner (2009) remarks, the children were executed because their parents were considered enemies of the state. Lynching in the US, between 1889 to 1930, constitutes another form of warfare; albeit more a form of societal warfare, which can occur even during peacetime. During this period, an estimated 3,724 individuals were lynched, and before usually being hung from a tree and displayed for all to see the pursued individual was tortured, humiliated, dragged, and sometimes burned in front of potentially many thousands of onlookers (Dutton, 2007). In the UK, trees have also been the site of hangings; for example, for the execution of ‘rebels’ – whatever this loose term was deemed to define at the time by the ruling powers (Barnes & Williamson, 2011).

Running concurrently to the very human dynamics of wars and forests, exist more ecologically-based aspects worthy of consideration in this section. Principally, and notably over the past decades, one can identify the desire to safeguard forest biodiversity during times of war, by incorporating forest conservation into military projects (Machlis & Hanson, 2008). As ascertained prior to this point, the demands placed upon the forest in such a period unrest is possibly incredibly great, and particularly when the forest is being harvested for its timber, is being cleared to flush out a hiding enemy or to remove a hiding place, or the war is taking place largely within the forest (Reuveny et al., 2010). In recent years, tropical forests over South America and Africa have been the site of armed conflicts between the state and drug cartels, rebels, or otherwise, and McNeely (2003) astutely observes that such forests and their ecosystems can therefore be considered victims of war. Where these forests are considered hotspots for biodiversity, the impact is certainly markedly more severe and concerning for the scientific community (Hanson et al., 2009).

However, war is not always bad for forests. Where armed conflicts drive the general populace away, if the forests are not being actively utilised for resource to fuel the conflict, then they can undoubtedly benefit from the sudden drop in human pressures. Of course, the displaced populace is not purged from existence, and therefore where refugee camps associated with the conflict are constructed within – or adjacent to – forests, there can be a huge spike in deforestation. A pertinent example of such a phenomenon is when the Rwandan civil war displaced large numbers of people, who settled in the Democratic Republic of Congo in refugee camps and caused over 300km² of deforestation to nearby forests (Machlis & Hanson, 2008).

References

Barnes, G. & Williamson, T. (2011) Ancient Trees in the Landscape: Norfolk’s arboreal heritage. UK: Windgather Press.

Clayton, A. (2012) Warfare in Woods and Forests. USA: Indiana University Press.

Hanson, T., Brooks, T., da Fonseca, G., Hoffmann, M., Lamoreux, J., Machlis, G., Mittermeier, C., Mittermeier, R., & Pilgrim, J. (2009) Warfare in biodiversity hotspots. Conservation Biology. 23 (3). p578-587.

Leete, J. (2014) The New Forest at War: Revised and Updated. UK: Sabrestorm.

Machlis, G. & Hanson, T. (2008) Warfare ecology. BioScience. 58 (8). p33-40.

Murdoch, A. (2006) Rome’s Greatest Defeat: Massacre in the Teutoburg Forest. UK: Sutton Publishing.

Nelson, A. (2005) Cold War Ecology: Forests, Farms, & People in the East German Landscape, 1945-1989. USA: Yale University Press.

Reuveny, R., Mihalache-O’Keef, A., & Li, Q. (2010) The effect of warfare on the environmentThe effect of warfare on the environment. Journal of Peace Research. 47 (6). p749-761.

Rush, R. (2001) Hell in Hürtgen Forest: The Ordeal and Triumph of an American Infantry Regiment. USA: University Press of Kansas.

Stone, D. (2008) The Historiography of Genocide. UK: Palgrave Macmillan.

Tyner, J. (2009) War, Violence, and Population: Making the Body Count. USA: The Guilford Press.

Whiting, C. (2000) Battle of Hürtgen Forest. UK: Spellmount.

Trees, forests and warfare

Ganoderma australe on larch (Larix decidua)

An interesting relationship going on here, which has been confirmed as Ganoderma australe colonising a larch specimen through microscopic analysis by a professional mycologist. This particular larch is wonderfully clad with ivy, though is still alive (just!). I came across this approximately a week ago and was quick to get it assessed, given the rarity of the relationship.

Not much to add here, besides reiterating it being a very infrequent occurrence – if at all recorded before and subsequently confirmed, in the UK. Cool, eh!

Ganoderma australe Larix decidua larch UK 1Ganoderma australe Larix decidua larch UK 2Ganoderma australe Larix decidua larch UK 3Ganoderma australe Larix decidua larch UK 4Ganoderma australe Larix decidua larch UK 5Ganoderma australe Larix decidua larch UK 6Ganoderma australe Larix decidua larch UK 7Ganoderma australe Larix decidua larch UK 8

Ganoderma australe on larch (Larix decidua)

A trip to Aldenham Country Park – trees and fungi

With the weather remaining fair, in spite of the onerous musings spouted from the verbal orifices of the meteorological office, getting out at the weekend to explore new sites is still very much on the cards. Today, a group of us went over to Aldenham Country Park in north-west London, to search for interesting fungi on trees; as if a weekend would yield any other result!

We started the day by doing something socially reprehensible: bringing in fungi collections for display. As the below photos show, my collection is growing in extent, though is dwarfed in literal size by another collection, which essentially involves monster brackets that are, in some cases, still clinging to the very substrate that provided them with their life.

polypore collection fungi
My collection, consisting of fruiting bodies of fungi including the genus Ganoderma (top left), the genus Trametes (bottom left), Fomes fomentarius (top middle), the genus Phellinus (bottom right) and Coriolopsis gallica (bottom right).
polypore collection 2
Another collection, set up almost like a demonstration of the solar system (with the Perenniporia fraxinea on the poplar being the sun, of course!), including Fomes fomentarius (a monster one), Daedalea quercina and, as stated, the Perenniporia fraxinea on the poplar wood.

Before sharing some finds from today, it’s almost important to share some images of more cross-sectional decay as caused by Ganoderma pfeifferi. For those of you with a memory that stretches back beyond a mere seven days, you might recall a recent post I made showing a decay cross-section on a failed beech. Below, we see how the fungus’ activity within a branch stub of a beech has resulted in zonal decay, which is somewhat comparable to the other example shared recently – particularly, with regards to the rosing pattern.

Ganoderma pfeifferi internal decay 1
A tiny Ganoderma pfeifferi within the opening of a branch stub wound on beech.
Ganoderma pfeifferi internal decay 2
The cross-section of decay produced by the fungus.

And so, on with the walk we did, quite early on we wandered past an old poplar stump with some quite extensive Rigidoporus ulmarius decay. Indeed, as is quite routine with this fungus, the internal hollow was clad aplenty with small brackets, whilst the outside sported a much more sizeable fruiting body still in an active phase of its existence. Evidently, a new hymenium has recently been laid down, suggesting that this fungus is soon ready to begin producing spore for the coming season.

Populus Rigidoporus ulmarius stump decay 1
Rigidoporus ulmarius acting as a saprotroph on this senescent stump.
Populus Rigidoporus ulmarius stump decay 2
Quite a nice one, actually! Good morphology.
Populus Rigidoporus ulmarius stump decay 3
Looking inside the hollow, not only can we see that it is used as a bin, but also to house many small fruiting bodies of this fungus.

Very soon after this sighting, a fallen poplar log with Oxyporus populinus was discovered. I admit to only having seen this fungus twice, of which this find was one, so for me this was particularly exciting. In fact, the single fruiting body was rather massive and easily discernible by the quite brilliant tube layers separated by narrow bands of mycelium. Almost directly adjacent to this was a fruiting body of Ganoderma applanatum, as could be determined morphologically by the very thin cuticle atop the bracket (that is crushed easily and cuts very easily) and the extensive damage to the fruiting body, as caused by the yellow flat-footed fly Agathomyia wankowiczii.

Oxyporus populinus Populus log 1
A poplar log hides amongst ivy.
Oxyporus populinus Populus log 2
On one of the cut ends sits this large fruiting body of the fungus Oxyporus populinus.
Oxyporus populinus Populus log 3
The demarcations between each growth spurt are incredibly distinct, in this fungus.
Ganoderma applanatum Populus log 1
A fruiting body of Ganoderma applanatum also sat nearby, on the same log.
Agathomyia wankowiczii Ganoderma applanatum Populus log 3
Underneath, we can see the distinct gall structures caused by the yellow flat-footed fly.
Agathomyia wankowiczii Ganoderma applanatum Populus log 2
We can also see the internal damage caused by the fly, as it develops into its adult form and leaves to lay eggs elsewhere. The very thin upper cuticle can also be seen, which is thicker on Ganoderma australe.

Following the sighting of copious amounts of Daedaleopsis confragosa, our attention was then drawn to a rather sorry-looking beech tree over a well-used footpath. Upon close inspection, both Kretzschmaria deusta and the rhizomorphs of Armillaria mellea could be found, which certainly puts the longevity of this beech as is into doubt. To be honest, in all likelihood it’ll be monolithed, in order to still provide habitat but with the risk removed.

Kretzschmaria deusta beech Fagus Armillaria 1
It even leans over the footpath!
Kretzschmaria deusta beech Fagus Armillaria 2
Both the anamorphic stage of Kretzschmaria deusta and cambial necrosis caused by Armillaria mellea can be seen, in this image.
Kretzschmaria deusta beech Fagus Armillaria 3
Not looking good for this beech!

Around the proverbial corner (it was more like a ten minute trundle) from this beech stood a massive stump of an old poplar. In its prime, this would have been a tree operating on beast-mode, though is now far more modest in size. However, to make up for its literal demise, it now is host to the fungus Trametes gibbosa, which can be seen around one of the two stems.

Trametes gibbosa Populus stump 1
A fortress of nettles guards this poplar stump.
Trametes gibbosa Populus stump 2
Too bad they can’t defend against a zoom lens and / or walking boots and jeans!
Trametes gibbosa Populus stump 3
Some fresh brackets adorn the opposite side of the stump.
Trametes gibbosa Populus stump 4
Quite pretty, to be honest!

Delightfully, this stump also housed a bird nest, which I found only by pure chance when noticing what looked like chocolate mini-eggs! Tucked away impossibly well within a bark crevice was a small robin’s nest (I think), complete with four eggs. Hopefully, this stump will offer enough privacy to enable the chicks to develop well and not get picked-off by predators.

Erithacus rubecula eggs poplar stump tree 1
The arrow shows where the nest is, as it’d otherwise be impossible to see!
Erithacus rubecula eggs poplar stump tree 2
There were four eggs in this tiny nest. Such a great place for shelter and quite absurd that I came across it!

Once we had come across yet more Daedaleopsis confragosa, which I was busy photographing, a friend spotted a single Sarcoscypha coccinea (scarlet elf cup). Somehow, this is the first time I have seen this fungus and I can understand why it’s such a popular one! An absolute gem.

Sarcoscypha coccinea 1
Cheeky! Hiding away under nettles. Almost doesn’t want to be discovered…
Sarcoscypha coccinea 2
Nature’s very own satellite dish!

And then came something I found very interesting: my first ever sighting of the fungus of willow known as Phellinus igniarius. Upon what was either a crack willow or white willow, a few fruiting bodies had grown and the decay had since led to failure of an upper limb, which has since been cut up and left on the ground. The resulting abundance of fruiting bodies on both the tree and sawn logs is a testamenrt to the extensive colonisation of this fungus within the host. The largest bracket, which was a casulaty of the failure, in fact did not senesce and instead reiterated its growth so that the hymenium and tube layer re-grew at an angle perfectly parallel with the ground (known as geotropism / gravitropsim).

Phellinus igniarius Salix alba fragilis sp decay 1
A willow not unlike any other willow – battered by the elements.
Phellinus igniarius Salix alba fragilis sp decay 2
Oh but wait – a fungus! Surely it’s a Ganoderma…
Phellinus igniarius Salix alba fragilis sp decay 3
…nope!
Phellinus igniarius Salix alba fragilis sp decay 4
As we shall see by what is on the floor, upon these logs…
Phellinus igniarius Salix alba fragilis sp decay 5
…Phellinus igniarius! Surprise! (assuming you didn’t read the text and look only at the pictures)
Phellinus igniarius Salix alba fragilis sp decay 6
Quite a significant number of new sporophores are forming, following the fragmentation of this limb.
Phellinus igniarius Salix alba fragilis sp decay 7
Around an old branch tear sits a single fruiting body, however.
Phellinus igniarius Salix alba fragilis sp decay 8
Not unlike a young Fomes fomentarius, really!
Phellinus igniarius Salix alba fragilis sp decay 9
And the main bracket has not perished!
Phellinus igniarius Salix alba fragilis sp decay 10
Using flash photography (literally), we can see the white spore print beneath the reiterated growth, following the change in orientation of this bracket.

To round off, I share a diabolically grotesque example of Ganoderma resinaceum upon Turkey oak. Enough to challenge the gargoyle statues of various catacombs (in both video games and real life, if there exist any!) for the prize of what’s the most vile in appearance, and we’re not talking about the Turkey oak here, this fungus is clearly a shadow of its former self. Nonetheless, it is important we can still identify them in such aberrant form, if we are to appropriate diagnose issues and enact management regimes. Thus, as a sort of encore, I present to you…

Ganoderma resinaceum Quercus cerris weird 1
Nice enough tree, eh!
Ganoderma resinaceum Quercus cerris weird 2
But what is that at the base!?
Ganoderma resinaceum Quercus cerris weird 3
Uhh………??
Ganoderma resinaceum Quercus cerris weird 4
Yeah; uhhh…….?
Ganoderma resinaceum Quercus cerris weird 5
Ganoderma resinaceum!
A trip to Aldenham Country Park – trees and fungi